These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 435554)

  • 1. [Stoichiometry of calcium transport by sarcoplasmic reticulum: utilization of p-nitrophenylphosphate as an energy donor].
    Brèthes D; Chevallier J; Tenu JP
    Biochimie; 1979; 61(1):109-13. PubMed ID: 435554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperative effects of Ca2+ and Sr2+ on sarcoplasmic reticulum adenosine triphosphatase.
    Holguín JA
    Arch Biochem Biophys; 1986 Nov; 251(1):9-16. PubMed ID: 3024577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation volumes of the calcium dependent para-nitrophenyl phosphate hydrolysis of the sarcoplasmic reticulum calcium transport enzyme.
    König KG; Hasselbach W
    Z Naturforsch C Biosci; 1984; 39(3-4):282-8. PubMed ID: 6233801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure effects on the interactions of the sarcoplasmic reticulum calcium transport enzyme with calcium and para-nitrophenyl phosphate.
    Hasselbach W; Stephan L
    Z Naturforsch C J Biosci; 1987 May; 42(5):641-52. PubMed ID: 2955599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [P-nitrophenol jet and titration of the phosphorylation sites of sarcoplasmic reticulum ATPase].
    Tenu JP; Ghelis C; Chevallier J
    Biochimie; 1974; 56(5):791-3. PubMed ID: 4281319
    [No Abstract]   [Full Text] [Related]  

  • 6. Volume changes in high-affinity calcium binding of the sarcoplasmic reticulum calcium-transport enzyme.
    Stephan S; Hasselbach W
    Eur J Biochem; 1991 Dec; 202(2):551-7. PubMed ID: 1761055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of acylphosphates on Ca2+ uptake by sarcoplasmic reticulum vesicles.
    Liguri G; Stefani M; Berti A; Nassi P; Ramponi G
    Arch Biochem Biophys; 1980 Apr; 200(2):357-63. PubMed ID: 7436409
    [No Abstract]   [Full Text] [Related]  

  • 8. Steady state kinetics of the (Ca2+ + Mg2+)-dependent P-nitrophenylphosphatase activity of sarcoplasmic reticulum vessicles.
    Ribeiro JM; Aragão ES; Vianna AL
    An Acad Bras Cienc; 1980 Jun; 52(2):403-9. PubMed ID: 6257155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elementary processes in the hydrolysis of ATP by sarcoplasmic reticulum membranes.
    Martonosi A; Lagwinska E; Oliver M
    Ann N Y Acad Sci; 1974 Feb; 227():549-67. PubMed ID: 4524344
    [No Abstract]   [Full Text] [Related]  

  • 10. The modulation of Ca-ATPase activity and protein-lipid interactions in the sarcoplasmic reticulum by ATP.
    Boldyrev A; Lopina O; Prokopjeva V; Stubbs C; Quinn PJ
    Biochem Int; 1983 Mar; 6(3):297-305. PubMed ID: 6236816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium transport and release by the sarcoplasmic reticulum.
    Katz AM; Shigekawa M; Repke DI; Hasselbach W
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():205-12. PubMed ID: 22900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Undirectional calcium and nucleotide fluxes in cardiac sarcoplasmic reticulum. II. Experimental results.
    Feher JJ; Briggs FN
    Biophys J; 1984 Jun; 45(6):1135-44. PubMed ID: 6234947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of 4-azido-2-nitrophenyl phosphate, a pseudosubstrate, with the sarcoplasmic reticulum Ca-ATPase.
    Lacapère JJ; Garin J
    Biochemistry; 1994 Mar; 33(9):2586-93. PubMed ID: 8117720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation and binding volumes of the sarcoplasmic reticulum transport enzyme activated by calcium or strontium.
    Stephan S; Hasselbach W
    Eur J Biochem; 1991 Feb; 196(1):231-7. PubMed ID: 2001703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient-state kinetic studies on the mechanism of furylacryloylphosphatase-coupled calcium ion transport with sarcoplasmic reticulum adenosine triphosphatase.
    Kurzmack M; Inesi G; Tal N; Bernhard SA
    Biochemistry; 1981 Feb; 20(3):486-91. PubMed ID: 6452157
    [No Abstract]   [Full Text] [Related]  

  • 16. Calcium handling by cardiac sarcoplasmic reticulum.
    Jones LR; Besch HR
    Tex Rep Biol Med; 1979; 39():19-35. PubMed ID: 162246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanism of active calcium transport by sarcoplasmic reticulum.
    Tada M; Yamamoto T; Tonomura Y
    Physiol Rev; 1978 Jan; 58(1):1-79. PubMed ID: 23557
    [No Abstract]   [Full Text] [Related]  

  • 18. Oxalate dependence of calcium uptake kinetics of rabbit skeletal muscle microsomes (fragmented sarcoplasmic reticulum).
    Li HC; Katz AM; Repke DI; Failor A
    Biochim Biophys Acta; 1974 Nov; 367(3):385-9. PubMed ID: 4429684
    [No Abstract]   [Full Text] [Related]  

  • 19. [Mutual effect of phosphorylation, oxidation, and proteolysis on calcium transport in the sarcoplasmic reticulum of the heart and vessels].
    Antipenko AE; Krasovskaia IE; Dizhe GP; Sharonov BP; Lyzlova SN
    Dokl Akad Nauk; 1992; 326(5):920-3. PubMed ID: 1337009
    [No Abstract]   [Full Text] [Related]  

  • 20. Effects of p-nitrophenylphosphate on Ca2+ transport in inside-out vesicles from human red-cell membranes.
    Caride AJ; Rega AF; Garrahan PJ
    Biochim Biophys Acta; 1983 Oct; 734(2):363-7. PubMed ID: 6225461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.