These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 4356378)

  • 1. Indirect coulometric titration of biological electron transport components.
    Hawkridge FM; Kuwana T
    Anal Chem; 1973 Jun; 46(7):1021-6. PubMed ID: 4356378
    [No Abstract]   [Full Text] [Related]  

  • 2. Midpoint potentials of cytochromes in vesicles of anaerobically-grown Paracoccus denitrificans determined by the indirect coulometric titration method.
    Kula T; Stellwagen E; Szentirmay R; Kuwana T
    Biochim Biophys Acta; 1981 Feb; 634(2):279-88. PubMed ID: 7470501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coulometric and potentiometric evaluation of the redox components of cytochrome c oxidase in situ.
    Wilson DF; Nelson D
    Biochim Biophys Acta; 1982 Jun; 680(3):233-41. PubMed ID: 6285964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-induced oxidation-reduction reactions in a cell-free preparation from the blue-green alga Nostoc muscorum: the role of cytochrome f, cytochrome b558, C550, and P700 in noncyclic electron transport.
    Knaff DB
    Biochim Biophys Acta; 1973 Nov; 325(2):284-96. PubMed ID: 4148619
    [No Abstract]   [Full Text] [Related]  

  • 5. Computer-assisted indirect coulometric titrations of biological redox components.
    Yates DA; Szentirmay R; Kuwana T
    Anal Biochem; 1980 Mar; 102(2):271-80. PubMed ID: 6252796
    [No Abstract]   [Full Text] [Related]  

  • 6. In situ characterisation of photosynthetic electron transport in Rhodopseudomonas capsulata.
    Evans EH; Crofts AR
    Biochim Biophys Acta; 1974 Jul; 357(1):89-102. PubMed ID: 4370093
    [No Abstract]   [Full Text] [Related]  

  • 7. Linking spectral and electrochemical analysis to monitor c-type cytochrome redox status in living Geobacter sulfurreducens biofilms.
    Liu Y; Kim H; Franklin RR; Bond DR
    Chemphyschem; 2011 Aug; 12(12):2235-41. PubMed ID: 21671335
    [No Abstract]   [Full Text] [Related]  

  • 8. Preferential binding of equine ferricytochrome c to the bacterial photosynthetic reaction center from Rhodobacter sphaeroides.
    Larson JW; Wraight CA
    Biochemistry; 2000 Dec; 39(48):14822-30. PubMed ID: 11101298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic and kinetic characterization of electron transfer components in situ in Rhodopseudomonas spheroides and Rhodospirillum rubrum.
    Dutton PL; Jackson JB
    Eur J Biochem; 1972 Nov; 30(3):495-510. PubMed ID: 4344828
    [No Abstract]   [Full Text] [Related]  

  • 10. Indirect coulometric titrations of complex IV in intact mitochondria and submitochondrial particles.
    Szentirmay R; Kuwana T
    Anal Chem; 1978 Nov; 50(13):1879-83. PubMed ID: 216283
    [No Abstract]   [Full Text] [Related]  

  • 11. Small-volume coulometric redoxostat.
    Swartz DB; Wilson GS
    Anal Biochem; 1971 Apr; 40(2):392-400. PubMed ID: 5551550
    [No Abstract]   [Full Text] [Related]  

  • 12. Oxidation of heme proteins by alkyl halides.
    Wade RS; Castro CE
    J Am Chem Soc; 1973 Jan; 95(1):231-4. PubMed ID: 4345550
    [No Abstract]   [Full Text] [Related]  

  • 13. Reaction of CO with cytochrome c oxidase. Titration of the reaction site with chemical oxidant and reductant.
    Wilson DF; Miyata Y
    Biochim Biophys Acta; 1977 Aug; 461(2):218-30. PubMed ID: 196643
    [No Abstract]   [Full Text] [Related]  

  • 14. [Electron transfer to hemoproteins. II. pH-dependence of the reduction rate of ferricytochrome c by oxymyoglobin].
    Atanosov BP; Postnikova GB; Sadykov IuKh; Vol'kenshteĭn MV
    Mol Biol (Mosk); 1977; 11(3):537-44. PubMed ID: 37434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox potentiometry: determination of midpoint potentials of oxidation-reduction components of biological electron-transfer systems.
    Dutton PL
    Methods Enzymol; 1978; 54():411-35. PubMed ID: 732578
    [No Abstract]   [Full Text] [Related]  

  • 16. Studies on electron transfer between mercury electrode and hemoprotein.
    Scheller F; Jänchen M; Lampe J; Prümke HJ; Blanck J; Palecek E
    Biochim Biophys Acta; 1975 Nov; 412(1):157-67. PubMed ID: 79
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane-bound respiratory system of Enterobacter cloacae strain HO1 grown anaerobically with chromate.
    Wang PC; Toda K; Ohtake H; Kusaka I; Yabe I
    FEMS Microbiol Lett; 1991 Feb; 62(1):11-5. PubMed ID: 1851711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Mechanism of electron transfer between myoglobin derivatives and ferricytochrome C].
    Postnikova GB
    Biofizika; 1986; 31(1):163-75. PubMed ID: 3006793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation in Rhodopseudomonas spheroides.
    Saunders VA; Jones OT
    FEBS Lett; 1974 Aug; 44(2):169-72. PubMed ID: 4371623
    [No Abstract]   [Full Text] [Related]  

  • 20. [Electron transport in hemoproteins. IX. The effect of zinc ions on the rate of oxymyoglobin oxidation by ferricytochrome c].
    Postnikova GB; Tselikova SV
    Mol Biol (Mosk); 1987; 21(4):1040-9. PubMed ID: 2821381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.