These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 4356659)

  • 1. On the role of a cuprous ion intermediate in the galactose oxidase reaction.
    Kosman DJ; Bereman RD; Ettinger MJ; Giordano RS
    Biochem Biophys Res Commun; 1973 Oct; 54(3):856-61. PubMed ID: 4356659
    [No Abstract]   [Full Text] [Related]  

  • 2. The valence of copper and the role of superoxide in the D-galactose oxidase catalyzed reaction.
    Hamilton GA; Libby RD; Hartzell CR
    Biochem Biophys Res Commun; 1973 Nov; 55(2):333-40. PubMed ID: 4358399
    [No Abstract]   [Full Text] [Related]  

  • 3. On the role of superoxide radical in the mechanism of action of galactose oxidase.
    Kwiatkowski LD; Kosman DJ
    Biochem Biophys Res Commun; 1973 Aug; 53(3):715-21. PubMed ID: 4738713
    [No Abstract]   [Full Text] [Related]  

  • 4. Superoxide dismutase activity of galactose oxidase.
    Cleveland L; Davis L
    Biochim Biophys Acta; 1974 Apr; 341(2):517-23. PubMed ID: 4134121
    [No Abstract]   [Full Text] [Related]  

  • 5. An investigation of the role of the copper in galactose oxidase.
    Cleveland L; Coffman RE; Coon P; Davis L
    Biochemistry; 1975 Mar; 14(6):1108-15. PubMed ID: 164209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circular dichroism spectra of the copper enzyme, galactose oxidase, in the presence of its substrates and products.
    Ettinger MJ; Kosman DJ
    Biochemistry; 1974 Mar; 13(6):1247-51. PubMed ID: 4360784
    [No Abstract]   [Full Text] [Related]  

  • 7. The involvement of superoxide and trivalent copper in the galactose oxidase reaction.
    Hamilton GA; Dyrkacz GR; Libby RD
    Adv Exp Med Biol; 1976; 74():489-504. PubMed ID: 183480
    [No Abstract]   [Full Text] [Related]  

  • 8. Oxygen and the copper chaperone CCS regulate posttranslational activation of Cu,Zn superoxide dismutase.
    Brown NM; Torres AS; Doan PE; O'Halloran TV
    Proc Natl Acad Sci U S A; 2004 Apr; 101(15):5518-23. PubMed ID: 15064408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential decrease of copper content and of copper binding to superoxide dismutase in liver, heart and brain of copper-deficient rats.
    Rossi L; Ciriolo MR; Marchese E; De Martino A; Giorgi M; Rotilio G
    Biochem Biophys Res Commun; 1994 Sep; 203(2):1028-34. PubMed ID: 8093020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of manganese superoxide dismutase by oxygen in Saccharomyces cerevisiae.
    Autor AP
    Biochem Soc Trans; 1982 Apr; 10(2):75-7. PubMed ID: 6279454
    [No Abstract]   [Full Text] [Related]  

  • 11. Lactoferrin-mediated formation of oxygen radicals by NADPH-cytochrome P-450 reductase system.
    Nakamura M
    J Biochem; 1990 Mar; 107(3):395-9. PubMed ID: 1692825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereoelectronic properties of metalloenzymes. II. Effects of ligand coordination on the electron spin resonance spectrum of galactose oxidase as a probe of structure and function.
    Giordano RS; Bereman RD; Kosman DJ; Ettinger MJ
    J Am Chem Soc; 1974 Feb; 96(4):1023-6. PubMed ID: 4361301
    [No Abstract]   [Full Text] [Related]  

  • 13. Stereoelectronic properties of metalloenzymes. I. A comparison of the coordination of copper (II) in galactose oxidase and a model system, N,N'-ethylenebis(trifluoroacetylacetoniminato)copper(II).
    Giordano RS; Bereman RD
    J Am Chem Soc; 1974 Feb; 96(4):1019-23. PubMed ID: 4361300
    [No Abstract]   [Full Text] [Related]  

  • 14. Role of Cu/Zn-superoxide dismutase in xenobiotic activation. II. Biological effects resulting from the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone.
    Li Y; Kuppusamy P; Zweir JL; Trush MA
    Mol Pharmacol; 1996 Mar; 49(3):412-21. PubMed ID: 8643080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoinactivation and protection of glycolate oxidase in vitro and in leaves.
    Schäfer L; Feierabend J
    Z Naturforsch C J Biosci; 2000; 55(5-6):361-72. PubMed ID: 10928547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of formate and oxalate in peroxisomal preparations from leaves of spinach beet (Beta vulgaris L.).
    Leek AE; Halliwell B; Butt VS
    Biochim Biophys Acta; 1972 Dec; 286(2):299-311. PubMed ID: 4349795
    [No Abstract]   [Full Text] [Related]  

  • 17. Oxygen-independent induction of enzyme activities related to oxygen metabolism in yeast by copper.
    Galiazzo F; Schiesser A; Rotilio G
    Biochim Biophys Acta; 1988 Apr; 965(1):46-51. PubMed ID: 2831994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The utilization of copper and its role in the biosynthesis of copper-containing proteins in the fungus, Dactylium dendroides.
    Shatzman AR; Kosman DJ
    Biochim Biophys Acta; 1978 Nov; 544(1):163-79. PubMed ID: 568946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of tryptophan in the spectral and catalytic properties of the copper enzyme, galactose oxidase.
    Kosman DJ; Ettinger MJ; Bereman RD; Giordano RS
    Biochemistry; 1977 Apr; 16(8):1597-601. PubMed ID: 192267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of oxygen and substrates for growth on the superoxide dismutase and catalase activity of microorganisms].
    Kulakova SM; Gogotov IN
    Mikrobiologiia; 1982; 51(1):21-6. PubMed ID: 6803110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.