These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 4356659)

  • 41. Metal-induced hydroxyl radical generation by Cu(+)-metallothioneins from LEC rat liver.
    Nakamura M; Nakayama K; Shishido N; Yumino K; Ohyama T
    Biochem Biophys Res Commun; 1997 Feb; 231(3):549-52. PubMed ID: 9070842
    [TBL] [Abstract][Full Text] [Related]  

  • 42. THE ROLE OF COPPER IN GALACTOSE OXIDASE.
    BLUMBERG WE; HORECKER BL; KELLY-FALCOZ F; PEISACH J
    Biochim Biophys Acta; 1965 Feb; 96():336-8. PubMed ID: 14298839
    [No Abstract]   [Full Text] [Related]  

  • 43. Allopurinol-insensitive oxygen radical formation by milk xanthine oxidase systems.
    Nakamura M
    J Biochem; 1991 Sep; 110(3):450-6. PubMed ID: 1663114
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Letter: Trivalent copper as a probable intermediate in the reaction catalyzed by galactose oxidase.
    Dyrkaez GR; Libby RD; Hamilton GA
    J Am Chem Soc; 1976 Jan; 98(2):626-8. PubMed ID: 1245688
    [No Abstract]   [Full Text] [Related]  

  • 45. Role of the superoxide free radical ion in photosynthetic ascorbate oxidation and ascorbate-mediated photophosphorylation.
    Elstner EF; Kramer R
    Biochim Biophys Acta; 1973 Sep; 314(3):340-53. PubMed ID: 4751235
    [No Abstract]   [Full Text] [Related]  

  • 46. The relationship of oxygen uptake to superoxide dismutase and catalase activity in human skeletal muscle.
    Jenkins RR; Friedland R; Howald H
    Int J Sports Med; 1984 Feb; 5(1):11-4. PubMed ID: 6607896
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of catalase and superoxide dismutase on side oxidations involving singlet oxygen.
    Finazzi Agró F; De Sole P; Rotilio G; Mondoví B
    Ital J Biochem; 1973; 22(5):217-31. PubMed ID: 4363678
    [No Abstract]   [Full Text] [Related]  

  • 48. Thiol oxidase activity of copper, zinc superoxide dismutase stimulates bicarbonate-dependent peroxidase activity via formation of a carbonate radical.
    Karunakaran C; Zhang H; Joseph J; Antholine WE; Kalyanaraman B
    Chem Res Toxicol; 2005 Mar; 18(3):494-500. PubMed ID: 15777089
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fluoride ion as a NMR relaxation probe of paramagnetic metalloenzymes: The binding of fluoride.
    Marwedel BJ; Kurland RJ; Kosman DJ; Ettinger MJ
    Biochem Biophys Res Commun; 1975 Apr; 63(3):773-9. PubMed ID: 1131263
    [No Abstract]   [Full Text] [Related]  

  • 50. CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse.
    Grankvist K; Marklund SL; Täljedal IB
    Biochem J; 1981 Nov; 199(2):393-8. PubMed ID: 7041886
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Time course of responses of human skeletal muscle to oxidative stress induced by nondamaging exercise.
    Khassaf M; Child RB; McArdle A; Brodie DA; Esanu C; Jackson MJ
    J Appl Physiol (1985); 2001 Mar; 90(3):1031-5. PubMed ID: 11181616
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Superoxide dismutase activity of low molecular Cu2+ complexes].
    Weser U; Joester KE; Paschen W; Jung G
    Hoppe Seylers Z Physiol Chem; 1972 Oct; 353(10):1576-7. PubMed ID: 4649846
    [No Abstract]   [Full Text] [Related]  

  • 53. Induction of the site I phosphorylation in vivo in Saccharomyces carlsbergensis.
    Onishi T
    Biochem Biophys Res Commun; 1970 Oct; 41(2):344-52. PubMed ID: 4325670
    [No Abstract]   [Full Text] [Related]  

  • 54. Presence of methylenetetrahydrofolate reductase of American Leishmania species and its absence from Trypanosoma species.
    Avila JL; Nosei C
    Mol Biochem Parasitol; 1983 Jan; 7(1):1-8. PubMed ID: 6341834
    [No Abstract]   [Full Text] [Related]  

  • 55. Effects of metal-binding fractions of tobacco smoke on in vitro activity of enzymes.
    Finelli VN; Petering HG
    Arch Environ Health; 1972 Aug; 25(2):97-100. PubMed ID: 5045069
    [No Abstract]   [Full Text] [Related]  

  • 56. Determination of biocatalytic parameters of a copper radical oxidase using real-time reaction progress monitoring.
    Forget SM; Xia FR; Hein JE; Brumer H
    Org Biomol Chem; 2020 Mar; 18(11):2076-2084. PubMed ID: 32108208
    [TBL] [Abstract][Full Text] [Related]  

  • 57. On the role of a cuprous ion intermediate in the galactose oxidase reaction.
    Kosman DJ; Bereman RD; Ettinger MJ; Giordano RS
    Biochem Biophys Res Commun; 1973 Oct; 54(3):856-61. PubMed ID: 4356659
    [No Abstract]   [Full Text] [Related]  

  • 58. The valence of copper and the role of superoxide in the D-galactose oxidase catalyzed reaction.
    Hamilton GA; Libby RD; Hartzell CR
    Biochem Biophys Res Commun; 1973 Nov; 55(2):333-40. PubMed ID: 4358399
    [No Abstract]   [Full Text] [Related]  

  • 59. On the role of superoxide radical in the mechanism of action of galactose oxidase.
    Kwiatkowski LD; Kosman DJ
    Biochem Biophys Res Commun; 1973 Aug; 53(3):715-21. PubMed ID: 4738713
    [No Abstract]   [Full Text] [Related]  

  • 60. Superoxide dismutase activity of galactose oxidase.
    Cleveland L; Davis L
    Biochim Biophys Acta; 1974 Apr; 341(2):517-23. PubMed ID: 4134121
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.