BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 4356786)

  • 21. Direct measurement of the redox potential of the primary and secondary quinone electron acceptors in Rhodopseudomonas sphaeroides (wild-type) by EPR spectrometry.
    Rutherford AW; Evans MC
    FEBS Lett; 1980 Feb; 110(2):257-61. PubMed ID: 6245923
    [No Abstract]   [Full Text] [Related]  

  • 22. The effect of o-phenanthroline on the midpoint potential of the primary electron acceptor of photosystem II.
    Knaff DB
    Biochim Biophys Acta; 1975 Mar; 376(3):583-7. PubMed ID: 235986
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The detection and characterization by electron-paramagnetic-resonance spectroscopy of iron-sulphur proteins and other electron-transport components in chromatophores from the purple bacterium Chromatium.
    Evans MC; Lord AV; Reeves SG
    Biochem J; 1974 Feb; 138(2):177-83. PubMed ID: 4362737
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In situ characterisation of photosynthetic electron transport in Rhodopseudomonas capsulata.
    Evans EH; Crofts AR
    Biochim Biophys Acta; 1974 Jul; 357(1):89-102. PubMed ID: 4370093
    [No Abstract]   [Full Text] [Related]  

  • 25. Adaptation in Rhodopseudomonas spheroides.
    Saunders VA; Jones OT
    FEBS Lett; 1974 Aug; 44(2):169-72. PubMed ID: 4371623
    [No Abstract]   [Full Text] [Related]  

  • 26. Reaction center bacteriochlorophyll triplet states: redox potential dependence and kinetics.
    Leigh JS; Dutton PL
    Biochim Biophys Acta; 1974 Jul; 357(1):67-77. PubMed ID: 4370313
    [No Abstract]   [Full Text] [Related]  

  • 27. Differential extraction and structural specificity of specialized ubiquinone molecules in secondary electron transfer in chromatophores from Rhodopseudomonas sphaeroides, Ga.
    Baccarini-Melandri A; Gabellini N; Melandri BA; Jones KR; Rutherford AW; Crofts AR; Hurt E
    Arch Biochem Biophys; 1982 Jul; 216(2):566-80. PubMed ID: 6981381
    [No Abstract]   [Full Text] [Related]  

  • 28. P+QA- and P+QB- charge recombinations in Rhodopseudomonas viridis chromatophores and in reaction centers reconstituted in phosphatidylcholine liposomes. Existence of two conformational states of the reaction centers and effects of pH and o-phenanthroline.
    Baciou L; Rivas E; Sebban P
    Biochemistry; 1990 Mar; 29(12):2966-76. PubMed ID: 2186805
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A kinetic completion of the cyclic photosynthetic electron pathway of Rhodopseudomonas sphaeroides: cytochrome b-cytochrome c2 oxidation-reduction.
    Prince RC; Dutton PL
    Biochim Biophys Acta; 1975 Jun; 387(3):609-13. PubMed ID: 166671
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Some properties of the ATPase from chromatophores of Rhodopseudomonas spheroides and its structural relationship to the bacteriochlorophyll proteins.
    Reed DW; Raveed D
    Biochim Biophys Acta; 1972; 283(1):79-91. PubMed ID: 4264676
    [No Abstract]   [Full Text] [Related]  

  • 31. The primary acceptor of bacterial photosynthesis: its operating midpoint potential?
    Prince RC; Dutton PL
    Arch Biochem Biophys; 1976 Feb; 172(2):329-34. PubMed ID: 4013
    [No Abstract]   [Full Text] [Related]  

  • 32. Reconstitution of light-dependent electron transport in membranes from a bacteriochlorophyll-less mutant of Rhodopseudomonas spheroides.
    Jones OT; Plewis KM
    Biochim Biophys Acta; 1974 Aug; 357(2):204-14. PubMed ID: 4153913
    [No Abstract]   [Full Text] [Related]  

  • 33. Primary events in photosynthesis: picosecond kinetics of carotenoid bandshifts in Rhodopseudomonas spheroides chromatophores.
    Leigh JS; Netzel TL; Dutton PL; Rentzepis PM
    FEBS Lett; 1974 Nov; 48(1):136-40. PubMed ID: 4547716
    [No Abstract]   [Full Text] [Related]  

  • 34. The relation between H+-uptake and electron flow in chromatophores from photosynthetic bacteria.
    Crofts AR; Evans EH; Cogdell RJ
    Ann N Y Acad Sci; 1974 Feb; 227():227-43. PubMed ID: 4597309
    [No Abstract]   [Full Text] [Related]  

  • 35. Transfer of light-induced electron-spin polarization from the intermediary acceptor to the prereduced primary acceptor in the reaction center of photosynthetic bacteria.
    Gast P; Hoff AJ
    Biochim Biophys Acta; 1979 Dec; 548(3):520-35. PubMed ID: 228714
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetics of the c-cytochromes in chromatophores from Rhodopseudomonas sphaeroides as a function of the concentration of cytochrome c2. Influence of this concentration on the oscillation of the secondary acceptor of the reaction centers QB.
    Snozzi M; Crofts AR
    Biochim Biophys Acta; 1985 Sep; 809(2):260-70. PubMed ID: 2994721
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the question of the primary acceptor in bacterial photosynthesis:manganese substituting for iron in reaction centers of Rhodopseudomonas spheroides R-26.
    Feher G; Isaacson RA; McElroy JD; Ackerson LC; Okamura MY
    Biochim Biophys Acta; 1974 Oct; 368(1):135-9. PubMed ID: 4371037
    [No Abstract]   [Full Text] [Related]  

  • 38. [Kinetics of the generation of a photo-induced electric potential in chromatophores of photosynthetizing bacteria].
    Semenov AIu; ChamorovskiÄ­ SK; Smirnova IA; Drachev LA; Kononenko AA
    Mol Biol (Mosk); 1981; 15(3):622-35. PubMed ID: 6789146
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Rieske iron-sulfur center in mitochondrial and photosynthetic systems: Em/pH relationships.
    Prince RC; Lindsay JG; Dutton PL
    FEBS Lett; 1975 Mar; 51(1):108-11. PubMed ID: 235450
    [No Abstract]   [Full Text] [Related]  

  • 40. Two regimens of electrogenic cyclic redox chain operation in chromatophores of non-sulfur purple bacteria. A study using antimycin A.
    Remennikov VG; Samuilov VD
    Biochim Biophys Acta; 1979 Nov; 548(2):216-33. PubMed ID: 116681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.