These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 4357881)

  • 21. Prosthecae of Asticcacaulis biprosthecum: system for the study of membrane transport.
    Porter JS; Pate JL
    J Bacteriol; 1975 Jun; 122(3):976-86. PubMed ID: 238952
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energy generation mechanisms in the in vitro-grown Mycobacterium lepraemurium.
    Ishaque M
    Int J Lepr Other Mycobact Dis; 1992 Mar; 60(1):61-70. PubMed ID: 1318345
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energetic aspects of the metabolism of reduced sulphur compounds in Thiobacillus dentrificans.
    Hoor AT
    Antonie Van Leeuwenhoek; 1976; 42(4):483-92. PubMed ID: 1087862
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Energy conservation in Thiobacillus neapolitanus C6 sulphide and sulphite oxidation.
    Drozd JW
    J Gen Microbiol; 1977 Jan; 98(1):309-12. PubMed ID: 188974
    [No Abstract]   [Full Text] [Related]  

  • 25. [Electron transfer pathways in iron-oxidizing bacteria Thiobacillus ferrooxidans].
    Tikhonova GV; Lisenkova LL; Doman NG; Skulachev VP
    Biokhimiia; 1967; 32(4):725-34. PubMed ID: 4385659
    [No Abstract]   [Full Text] [Related]  

  • 26. Yield coefficients of Thiobacillus neapolitanus in continuous culture.
    Hempfling WP; Vishniac W
    J Bacteriol; 1967 Mar; 93(3):874-8. PubMed ID: 6025430
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ATP generation during reduced inorganic sulfur compound oxidation by Acidithiobacillus caldus is exclusively due to electron transport phosphorylation.
    Dopson M; Lindström EB; Hallberg KB
    Extremophiles; 2002 Apr; 6(2):123-9. PubMed ID: 12013432
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glutamate uptake in Thiobacillus novellus.
    Hoban DJ; Lyric RM
    Can J Microbiol; 1977 Mar; 23(3):271-7. PubMed ID: 856422
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of heat treatment of electron-transport particles on bacterial oxidative phosphorylation.
    Bogin E; Higashi T; Brodie AF
    Proc Natl Acad Sci U S A; 1970 Sep; 67(1):1-6. PubMed ID: 4318778
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical and chemiosmotic aspects of electron transport-linked phosphorylation.
    Ernster L
    Annu Rev Biochem; 1977; 46():981-95. PubMed ID: 20042
    [No Abstract]   [Full Text] [Related]  

  • 31. New facultative Thiobacillus and a reevaluation of the heterotrophic potential of Thiobacillus novellus.
    Taylor BF; Hoare DS
    J Bacteriol; 1969 Oct; 100(1):487-97. PubMed ID: 5344108
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Enzymatic organization of mitochondrial membranes].
    Wojtczak L
    Postepy Biochem; 1971; 17(2):209-23. PubMed ID: 4329121
    [No Abstract]   [Full Text] [Related]  

  • 33. THE EFFECT OF UNCOUPLING AGENTS ON CARBON DIOXIDE FIXATION BY A THIOBACILLUS.
    KELLY DP; SYRETT PJ
    J Gen Microbiol; 1964 Feb; 34():307-17. PubMed ID: 14135537
    [No Abstract]   [Full Text] [Related]  

  • 34. Regulation of glucose transport and metabolism in Thiobacillus novellus.
    Matin A; Schleiss M; Perez RC
    J Bacteriol; 1980 May; 142(2):639-44. PubMed ID: 7380803
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Energy coupling during sulphur compound oxidation by Thiobacillus sp. strain C.
    Kelly DP; Syrett PJ
    J Gen Microbiol; 1966 Apr; 43(1):109-18. PubMed ID: 5954374
    [No Abstract]   [Full Text] [Related]  

  • 36. Separation of a factor indispensable for coupled phosphorylation from the particulate fraction of Mycobacterium phlei.
    Higashi T; Bogin E; Brodie AF
    J Biol Chem; 1969 Jan; 244(2):500-2. PubMed ID: 4304303
    [No Abstract]   [Full Text] [Related]  

  • 37. Mitochondrial ATP-Pi exchange complex and the site of uncoupling of oxidative phosphorylation.
    Hatefi Y; Hanstein WG; Galante Y; Stiggall DL
    Fed Proc; 1975 Jul; 34(8):1699-706. PubMed ID: 1093889
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition of rat liver mitochondria electron transport flow by aflatoxin B 1 .
    Doherty WP; Campbell TC
    Res Commun Chem Pathol Pharmacol; 1972 May; 3(3):601-12. PubMed ID: 4338341
    [No Abstract]   [Full Text] [Related]  

  • 39. Studies on energy-linked reactions. Energy-linked reduction of oxidized nicotinamide-adenine dinucleotide by succinate in Escherichia coli.
    Sweetman AJ; Griffiths DE
    Biochem J; 1971 Jan; 121(1):117-24. PubMed ID: 4107303
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adenosine 5'-triphosphate formation in Thiobacillus ferrooxidans vesicles by H+ ion gradients comparable to those of environmental conditions.
    Apel WA; Dugan PR; Tuttle JH
    J Bacteriol; 1980 Apr; 142(1):295-301. PubMed ID: 7372573
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.