These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 4358046)

  • 21. Effect of pH on adenine and amino acid uptake during sporulation in Saccharomyces cerevisiae.
    Mills D
    J Bacteriol; 1972 Oct; 112(1):519-26. PubMed ID: 4562406
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Studies on mitochondria membrane proteins in Saccharomyces cerevisiae under different degrees of glucose repression.
    Mian FA; Küenzi MT; Halvorson HO
    J Bacteriol; 1973 Sep; 115(3):876-81. PubMed ID: 4353872
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Erythromycin inhibition of sporulation in Saccharomyces cerevisiae.
    Puglisi PP; Zennaro E
    Experientia; 1971 Aug; 27(8):963-4. PubMed ID: 4947887
    [No Abstract]   [Full Text] [Related]  

  • 24. Functional interrelationships between carbohydrate and lipid storage, and mitochondrial activity during sporulation in Saccharomyces cerevisiae.
    Liu Y; Wood NE; Marchand AJ; Arguello-Miranda O; Doncic A
    Yeast; 2020 Mar; 37(3):269-279. PubMed ID: 31960994
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sporulation synchrony of Saccharomyces cerevisiae grown in various carbon sources.
    Fast D
    J Bacteriol; 1973 Nov; 116(2):925-30. PubMed ID: 4583256
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A regulatory factor, Fil1p, involved in derepression of the isocitrate lyase gene in Saccharomyces cerevisiae--a possible mitochondrial protein necessary for protein synthesis in mitochondria.
    Kanai T; Takeshita S; Atomi H; Umemura K; Ueda M; Tanaka A
    Eur J Biochem; 1998 Aug; 256(1):212-20. PubMed ID: 9746366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accumulation of replicative intermediates of mitochondrial DNA in Tetrahymena pyriformis grown in ethidium bromide.
    Upholt WB; Borst P
    J Cell Biol; 1974 May; 61(2):383-97. PubMed ID: 4208072
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Induction of petite mutations during germination and outgrowth of Saccharomyces cerevisiae ascospores.
    Redshaw RA
    J Bacteriol; 1975 Dec; 124(3):1411-6. PubMed ID: 53231
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Factors affecting petite induction and the recovery of respiratory competence in yeast cells exposed to ethidium bromide.
    Hall RM; Trembath MK; Linnane AW; Wheelis L; Criddle RS
    Mol Gen Genet; 1976 Mar; 144(3):253-62. PubMed ID: 775297
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular mechanisms of mitochondrial genetic activity. Effects of ethidium bromide on the deoxyribonucleic acid and energetics of isolated mitochondria.
    Bastos Rde N; Mahler HR
    J Biol Chem; 1974 Oct; 249(20):6617-27. PubMed ID: 4278556
    [No Abstract]   [Full Text] [Related]  

  • 31. Promotion of sporulation by caffeine pretreatment in Saccharomyces cerevisiae. II. Changes in ribonuclease activity during sporulation.
    Tsuboi M; Yanagishima N
    Arch Microbiol; 1976 Jun; 108(2):149-52. PubMed ID: 776113
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of sporulation by ethidium bromide and its reversal by fermentable sugars in Saccharomyces cerevisiae.
    Tsuboi M; Kondo K; Yanagishima N
    Arch Microbiol; 1974; 99(4):295-305. PubMed ID: 4611375
    [No Abstract]   [Full Text] [Related]  

  • 33. A role for MHR1, a gene required for mitochondrial genetic recombination, in the repair of damage spontaneously introduced in yeast mtDNA.
    Ling F; Morioka H; Ohtsuka E; Shibata T
    Nucleic Acids Res; 2000 Dec; 28(24):4956-63. PubMed ID: 11121487
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibiton by sulfanilamide of sporulation in Saccharomyces cerevisiae.
    Colonna WJ; Gentile JM; Magee PT
    Can J Microbiol; 1977 Jun; 23(6):659-71. PubMed ID: 17462
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of chloramphenicol isomers and erythromycin on enzyme and lipid synthesis induced by oxygen in wild-type and petite yeast.
    Gordon PA; Lowdon MJ; Stewart PR
    J Bacteriol; 1972 May; 110(2):504-10. PubMed ID: 4336687
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lipophilic proteins of mitochondria from microaerobic and aerobic continuous cultures of Saccharomyces cerevisiae.
    Rogers PJ; Stewart PR
    J Bacteriol; 1974 Sep; 119(3):653-60. PubMed ID: 4604699
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Absolute glutathione requirement for sporulation of a yeast Saccharomyces cerevisiae.
    Suizu T; Tsutsumi H; Ohtake Y; Kawado A; Imayasu S; Kimura A; Murata K
    Biochem Biophys Res Commun; 1994 Dec; 205(2):1151-4. PubMed ID: 7802644
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial DNA replication in petite mutants of yeast: resistance to inhibition by ethidium bromide, berenil and euflavine.
    Nagley P; Mattick JS
    Mol Gen Genet; 1977 Apr; 152(3):277-83. PubMed ID: 327283
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Suppression of photo-induced sporulation in Trichoderma viride by inhibitors.
    Betina V; SpiĭakoviJ
    Folia Microbiol (Praha); 1976; 21(5):362-70. PubMed ID: 61923
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Induction and characterization of morphologic mutants in a natural Saccharomyces cerevisiae strain.
    Barberio C; Bianchi L; Pinzauti F; Lodi T; Ferrero I; Polsinelli M; Casalone E
    Can J Microbiol; 2007 Feb; 53(2):223-30. PubMed ID: 17496970
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.