These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 4358560)
1. A proton relaxation rate study of the copper analog of Escherichia coli alkaline phosphatase. Zukin RS; Hollis DP J Biol Chem; 1974 Jan; 249(2):656-8. PubMed ID: 4358560 [No Abstract] [Full Text] [Related]
2. Negative cooperativity and half of the sites reactivity. Alkaline phosphatases of Escherichia coli with Zn2+, Co2+, Cd2+, Mn2+, and Cu2+ in the active sites. Chappelet-Tordo D; Iwatsubo M; Lazdunski M Biochemistry; 1974 Aug; 13(18):3754-62. PubMed ID: 4604809 [No Abstract] [Full Text] [Related]
3. Role of metal ions in Escherichia coli alkaline phosphatase. A study of the metal-water interaction by nuclear relaxation rate measurements on water protons. Zukin RS; Hollis DP J Biol Chem; 1975 Feb; 250(3):835-42. PubMed ID: 163241 [TBL] [Abstract][Full Text] [Related]
4. Binding of metal ions to apoalkaline phosphatase from E. coli: effect of ionic radius. LeVine H; Tsong TY; Hollis DP Life Sci; 1976 Sep; 19(6):859-65. PubMed ID: 787713 [No Abstract] [Full Text] [Related]
5. Electron paramagnetic resonance studies on the copper(II) substituted alkaline phosphatase from Escherichia coli. Csopak H; Falk KE Biochim Biophys Acta; 1974 Jul; 359(1):22-32. PubMed ID: 4367983 [No Abstract] [Full Text] [Related]
6. Fluorotyrosine alkaline phosphatase. 19F nuclear magnetic resonance relaxation times and molecular motion of the individual fluorotyrosines. Hull WE; Sykes BD Biochemistry; 1974 Aug; 13(17):3431-7. PubMed ID: 4602295 [No Abstract] [Full Text] [Related]
7. Cobalt(III), a probe of metal binding sites of Escherichia coli alkaline phosphatase. Anderson RA; Vallee BL Proc Natl Acad Sci U S A; 1975 Jan; 72(1):394-7. PubMed ID: 164026 [TBL] [Abstract][Full Text] [Related]
8. Zinc stoichiometry in Escherichia coli alkaline phosphatase. Studies by 31P NMR and ion-exchange chromatography. Bock JL; Kowalsky A Biochim Biophys Acta; 1978 Sep; 526(1):135-46. PubMed ID: 28775 [TBL] [Abstract][Full Text] [Related]
9. Escherichia coli Co(II) alkaline phosphatase. Absorption, circular dichroism, and magnetic circular dichroism of the d-d electronic transitions. Taylor JS; Lau CY; Applebury ML; Coleman JE J Biol Chem; 1973 Sep; 248(17):6216-20. PubMed ID: 4580054 [No Abstract] [Full Text] [Related]
10. Hydrogen-tritium exchange of partially and fully reconstituted zinc and cobalt alkaline phosphatase of Escherichia coli. Brown EM; Ulmer DD; Vallee BL Biochemistry; 1974 Dec; 13(26):5328-34. PubMed ID: 4611482 [No Abstract] [Full Text] [Related]
11. Functional and structural properties of immobilized subunits of Escherichia coli alkaline phosphatase. McCracken S; Meighen E J Biol Chem; 1980 Mar; 255(6):2396-404. PubMed ID: 6987221 [No Abstract] [Full Text] [Related]
12. Alkaline phosphatase, solution structure, and mechanism. Coleman JE; Gettins P Adv Enzymol Relat Areas Mol Biol; 1983; 55():381-452. PubMed ID: 6312783 [No Abstract] [Full Text] [Related]
13. Effect of EDTA on Escherichia coli alkaline phosphatase. Csopak H; Falk KE; Szajn H Biochim Biophys Acta; 1972 Feb; 258(2):466-72. PubMed ID: 4334532 [No Abstract] [Full Text] [Related]
14. 31 P NMR studies on phosphate binding to the Zn 2+ , Co 2+ and Mn 2+ forms of escherichia coli alkaline phosphatase. Csopak H; Drakenberg T FEBS Lett; 1973 Mar; 30(3):296-300. PubMed ID: 4573438 [No Abstract] [Full Text] [Related]
15. Nitrogen ligands at the active site of alkaline phosphatase. Taylor JS; Coleman JE Proc Natl Acad Sci U S A; 1972 Apr; 69(4):859-62. PubMed ID: 4337243 [TBL] [Abstract][Full Text] [Related]
16. Structure and mechanism of alkaline phosphatase. Coleman JE Annu Rev Biophys Biomol Struct; 1992; 21():441-83. PubMed ID: 1525473 [TBL] [Abstract][Full Text] [Related]
17. Conversion of a magnesium binding site into a zinc binding site by a single amino acid substitution in Escherichia coli alkaline phosphatase. Murphy JE; Xu X; Kantrowitz ER J Biol Chem; 1993 Oct; 268(29):21497-500. PubMed ID: 8407998 [TBL] [Abstract][Full Text] [Related]
18. A nuclear magnetic resonance study of the interaction of inhibitory nucleosides with Escherichia coli aspartate transcarbamylase and its regulatory subunit. London RE; Schmidt PG Biochemistry; 1974 Mar; 13(6):1170-9. PubMed ID: 4592470 [No Abstract] [Full Text] [Related]
19. Structural and activational zinc in Escherichia coli alkaline phosphatase. Trotman CN; Greenwood C Biochem J; 1971 Jan; 121(1):12P. PubMed ID: 5000593 [No Abstract] [Full Text] [Related]
20. Evidence for histidyl residues at the Zn2+ binding sites of monomeric and dimeric forms of alkaline phosphatase. McCracken S; Meighen EA J Biol Chem; 1981 Apr; 256(8):3945-50. PubMed ID: 7012146 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]