These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 4359435)

  • 61. Phosphorylation-dephosphorylation of cardiac microsomes: a possible mechanism for control of calcium uptake by cyclic AMP.
    La Raia PJ; Morkin E
    Recent Adv Stud Cardiac Struct Metab; 1974; 4():417-26. PubMed ID: 4377614
    [No Abstract]   [Full Text] [Related]  

  • 62. Phosphorylation of the inhibitory subunit of troponin and its effect on the calcium dependence of cardiac myofibril adenosine triphosphatase.
    Ray KP; England PJ
    FEBS Lett; 1976 Nov; 70(1):11-6. PubMed ID: 136365
    [No Abstract]   [Full Text] [Related]  

  • 63. Cyclic adenosine 3',5'-monophosphate-stimulated protein kinase and a substrate associated with cardiac sarcoplasmic reticulum.
    Wray HL; Gray RR; Olsson RA
    J Biol Chem; 1973 Feb; 248(4):1496-8. PubMed ID: 4346960
    [No Abstract]   [Full Text] [Related]  

  • 64. Enzyme histochemistry of heart muscle in normal and pathologic conditions.
    Hecht A
    Methods Achiev Exp Pathol; 1971; 5():384-435. PubMed ID: 4343758
    [No Abstract]   [Full Text] [Related]  

  • 65. Effect of drugs on the cyclic adenosine 3' 5' monophosphate-dependent protein kinase-induced stimulation of calcium uptake by cardiac microsomal fractions.
    Nayler WG; Berry D
    J Mol Cell Cardiol; 1975 Jun; 7(6):387-95. PubMed ID: 169356
    [No Abstract]   [Full Text] [Related]  

  • 66. Intracellular calcium and myocardial contractility. V. Calcium uptake of sarcoplasmic reticulum fractions in hypertrophied and failing rabbit hearts.
    Ito Y; Suko J; Chidsey CA
    J Mol Cell Cardiol; 1974 Jun; 6(3):237-47. PubMed ID: 4837895
    [No Abstract]   [Full Text] [Related]  

  • 67. Time-dependent alterations of myocardial microsomal yield and calcium accumulation in experimentally-induced right ventricular hypertrophy and failure.
    Shlafer M; Gelband H; Sung RJ; Palmer RF; Bassett AL
    J Mol Cell Cardiol; 1978 Apr; 10(4):395-407. PubMed ID: 147947
    [No Abstract]   [Full Text] [Related]  

  • 68. Mechanisms of contraction of the normal and failing heart.
    Braunwald E; Ross J; Sonnenblick EH
    N Engl J Med; 1967 Oct; 277(15):794-800 contd. PubMed ID: 4227704
    [No Abstract]   [Full Text] [Related]  

  • 69. Binding of the polyflavane P13 on various pig myocardial membranes--effects on protein release and on Ca2+ and Mg2+ movements.
    Di Pietro A; Godinot C; Vial C; Gautheron DC
    Biochem Pharmacol; 1977 Oct; 26(19):1775-81. PubMed ID: 143940
    [No Abstract]   [Full Text] [Related]  

  • 70. The stimulation of calcium uptake into sarcoplasmic-reticulum vesicles from rat heart by adenosine 3',5'-phosphate-dependent protein kinase [proceedings].
    Hollinworth DN; England PJ
    Biochem Soc Trans; 1978; 6(3):573-6. PubMed ID: 208890
    [No Abstract]   [Full Text] [Related]  

  • 71. [Participation of intracellular membrane systems of the myocardium in the development of cardiac hypertrophy (author's transl)].
    Fízel' A; Turcáni M; Fízel'ová A; Krizko J; Divéky L; Maasová D
    Bratisl Lek Listy; 1981 Jan; 75(1):10-5. PubMed ID: 6452190
    [No Abstract]   [Full Text] [Related]  

  • 72. Phosphorylated cardiac myofibrils and their effect on ATPase activity.
    Wyborny LE; Reddy YS
    Biochem Biophys Res Commun; 1978 Apr; 81(4):1175-9. PubMed ID: 208543
    [No Abstract]   [Full Text] [Related]  

  • 73. Cyclic AMP-dependent and independent protein kinase phosphorylation of canine cardiac myosin light chains.
    Reddy YS; Pitts BJ; Schwartz A
    J Mol Cell Cardiol; 1977 Jul; 9(7):501-13. PubMed ID: 197241
    [No Abstract]   [Full Text] [Related]  

  • 74. Influence of hyperthyroidism on the uptake and binding of calcium by cardiac microsomal fractions and on mitochondrial structure.
    Nayler WG; Merrillees NC; Chipperfield D; Kurtz JB
    Cardiovasc Res; 1971 Oct; 5(4):469-82. PubMed ID: 4258555
    [No Abstract]   [Full Text] [Related]  

  • 75. "Tonic" and "phasic" mechanisms in the regulation of myocardial contractility.
    Katz AM
    Basic Res Cardiol; 1976; 71(5):447-55. PubMed ID: 189748
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Regulation of cardiac contraction.
    Ross J; Sobel BE
    Annu Rev Physiol; 1972; 34():47-90. PubMed ID: 4334850
    [No Abstract]   [Full Text] [Related]  

  • 77. [Protein synthesis and degradation in the development of myocardial hypertrophy].
    Fízel' A; Fízel'ová A
    Cesk Fysiol; 1978 Sep; 27(5):427-37. PubMed ID: 215334
    [No Abstract]   [Full Text] [Related]  

  • 78. Calcium-movement controlling cardiac contractility II. Analog computation of cardiac excitation-contraction coupling on the basis of calcium kinetics in a multi-compartment model.
    Kaufmann R; Bayer R; Fürniss T; Krause H; Tritthart H
    J Mol Cell Cardiol; 1974 Dec; 6(6):543-59. PubMed ID: 4140916
    [No Abstract]   [Full Text] [Related]  

  • 79. [Role of the calcium pump of the sarcoplasmic reticulum in the relaization of the cardiac systole and diastole].
    Meerson FZ; Pshennikova MG
    Kardiologiia; 1969 Apr; 9(4):144-53. PubMed ID: 4240884
    [No Abstract]   [Full Text] [Related]  

  • 80. Structural and functional characterization of dog heart microsomes.
    Pretorius PJ; Pohl WG; Smithen CS; Inesi G
    Circ Res; 1969 Oct; 25(4):487-99. PubMed ID: 4310441
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.