These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 4359954)

  • 1. Comparison of in vitro and cell-mediated alteration of a human Rhinovirus and its inhibition by sodium dodecyl sulfate.
    Lonberg-Holm K; Noble-Harvey J
    J Virol; 1973 Oct; 12(4):819-26. PubMed ID: 4359954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early alteration of poliovirus in infected cells and its specific inhibition.
    Lonberg-Holm K; Gosser LB; Kauer JC
    J Gen Virol; 1975 Jun; 27(3):329-42. PubMed ID: 167116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of the parameters of binding of R 61837 to human rhinovirus 9 and immunobiochemical evidence of capsid-stabilizing activity of the compound.
    Moeremans M; De Raeymaeker M; Daneels G; De Brabander M; Aerts F; Janssen C; Andries K
    Antimicrob Agents Chemother; 1992 Feb; 36(2):417-24. PubMed ID: 1318682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antigenic determinants of infective and inactivated human rhinovirus type 2.
    Lonberg-Holm K; Yin FH
    J Virol; 1973 Jul; 12(1):114-23. PubMed ID: 4126195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of dichloroflavan (BW683C) on the stability and uncoating of rhinovirus type 1B.
    Tisdale M; Selway JW
    J Antimicrob Chemother; 1984 Aug; 14 Suppl A():97-105. PubMed ID: 6092321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antivirus agent, Ro 09-0410, binds to rhinovirus specifically and stabilizes the virus conformation.
    Ninomiya Y; Ohsawa C; Aoyama M; Umeda I; Suhara Y; Ishitsuka H
    Virology; 1984 Apr; 134(2):269-76. PubMed ID: 6100571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of rhinovirus subviral A particles via capillary electrophoresis, electron microscopy and gas-phase electrophoretic mobility molecular analysis: Part I.
    Weiss VU; Subirats X; Pickl-Herk A; Bilek G; Winkler W; Kumar M; Allmaier G; Blaas D; Kenndler E
    Electrophoresis; 2012 Jul; 33(12):1833-41. PubMed ID: 22740471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study on the mechanisms of rotavirus inactivation by sodium dodecyl sulfate and ethylenediaminetetraacetate.
    Ward RL; Ashley CS
    Appl Environ Microbiol; 1980 Jun; 39(6):1148-53. PubMed ID: 6250474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capillary electrophoresis of affinity complexes between subviral 80S particles of human rhinovirus and monoclonal antibody 2G2.
    Kremser L; Petsch M; Blaas D; Kenndler E
    Electrophoresis; 2006 Jul; 27(13):2630-7. PubMed ID: 16732623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of rhinovirus-soluble ICAM-1 complexes and conformational changes in the virion.
    Hoover-Litty H; Greve JM
    J Virol; 1993 Jan; 67(1):390-7. PubMed ID: 8093221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical studies on the mechanism of chemical and physical inactivation of reovirus.
    Drayna D; Fields BN
    J Gen Virol; 1982 Nov; 63 (Pt 1)():161-70. PubMed ID: 7175501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential steps in attachment of human rhinovirus type 2 to HeLa cells.
    Noble-Harvey J; Lonberg-Holm K
    J Gen Virol; 1974 Oct; 25(1):83-91. PubMed ID: 4372319
    [No Abstract]   [Full Text] [Related]  

  • 13. Characterization of rhinovirus subviral A particles via capillary electrophoresis, electron microscopy and gas phase electrophoretic mobility molecular analysis: part II.
    Subirats X; Weiss VU; Gösler I; Puls C; Limbeck A; Allmaier G; Kenndler E
    Electrophoresis; 2013 Jun; 34(11):1600-9. PubMed ID: 23483563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of human immunodeficiency virus type 1 by nonoxynol-9, C31G, or an alkyl sulfate, sodium dodecyl sulfate.
    Krebs FC; Miller SR; Malamud D; Howett MK; Wigdahl B
    Antiviral Res; 1999 Oct; 43(3):157-73. PubMed ID: 10551374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early interaction of rhinoviruses with host cells.
    Lonberg-Holm K; Korant BD
    J Virol; 1972 Jan; 9(1):29-40. PubMed ID: 4333543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of isoflavans and isoflavenes on rhinovirus 1B and its replication in HeLa cells.
    Conti C; Orsi N; Stein ML
    Antiviral Res; 1988 Nov; 10(1-3):117-27. PubMed ID: 2852916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infectivity and sedimentation of rhinovirus ribonucleic acid.
    Nair CN; Lonberg-Holm KK
    J Virol; 1971 Feb; 7(2):278-80. PubMed ID: 4329400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational change in the floor of the human rhinovirus canyon blocks adsorption to HeLa cell receptors.
    Pevear DC; Fancher MJ; Felock PJ; Rossmann MG; Miller MS; Diana G; Treasurywala AM; McKinlay MA; Dutko FJ
    J Virol; 1989 May; 63(5):2002-7. PubMed ID: 2539499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallization of human rhinovirus 1A.
    Korant BD; Stasny JT
    Virology; 1973 Oct; 55(2):410-7. PubMed ID: 4355113
    [No Abstract]   [Full Text] [Related]  

  • 20. Anti-human rhinovirus activity of gallic acid possessing antioxidant capacity.
    Choi HJ; Song JH; Bhatt LR; Baek SH
    Phytother Res; 2010 Sep; 24(9):1292-6. PubMed ID: 20104501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.