These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 4360798)

  • 61. Proceedings: Structural analysis of the poly(ADP-ribose).
    Janine D
    J Biochem; 1975 Jan; 77(1?):4p-5p. PubMed ID: 166076
    [No Abstract]   [Full Text] [Related]  

  • 62. Effect of deoxyribonuclease I on the number and length of chains of poly(ADP-ribose) synthesized, in vitro.
    Miller EG
    Biochem Biophys Res Commun; 1975 Sep; 66(1):280-6. PubMed ID: 169848
    [No Abstract]   [Full Text] [Related]  

  • 63. Poly(ADP-ribose) synthesis in nucleoli and ADP-ribosylation of nucleolar proteins in mouse ascites tumor cells in vitro.
    Kawashima K; Izawa M
    J Biochem; 1981 Jun; 89(6):1889-901. PubMed ID: 7287663
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cysteine-specific ADP-ribosylation of actin.
    Just I; Wollenberg P; Moss J; Aktories K
    Eur J Biochem; 1994 May; 221(3):1047-54. PubMed ID: 8181461
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Purification, subunit structure and properties of two repressible phosphohydrolases of Bacillus subtilis.
    Le Hégarat JC; Anagnostopoulos C
    Eur J Biochem; 1973 Nov; 39(2):525-39. PubMed ID: 4359630
    [No Abstract]   [Full Text] [Related]  

  • 66. [The eukaryotic elongation factor EF-2 loses its nonspecific affinity for RNA as a result of ADP ribosylation].
    Bezlepkina TA; Davydova EK; Sitikov AS; Vertiev IuA; Ezepchuk IuV
    Dokl Akad Nauk SSSR; 1984; 278(3):751-4. PubMed ID: 6209075
    [No Abstract]   [Full Text] [Related]  

  • 67. Estimating the amounts of ADP-ribosylatable active elongation factor-2 in mammalian cell-free extracts.
    Riis B; Rattan SI; Clark BF
    J Biochem Biophys Methods; 1989 Oct; 19(4):319-25. PubMed ID: 2693515
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cellular regulation of poly(ADP) ribosylation of proteins. I. Comparison of hepatocytes, cultured cells and liver nuclei and the influence of varying concentrations of NAD.
    Kirsten E; Jackowski G; McLick J; Hakam A; Decker K; Kun E
    Exp Cell Res; 1985 Nov; 161(1):41-52. PubMed ID: 3932085
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Maturation of human promyelocytic leukemia cells induced by nicotinamide: evidence of a regulatory role for ADP-ribosylation of chromosomal proteins.
    Lucas DL; Tanuma S; Davies PJ; Wright DG; Johnson GS
    J Cell Physiol; 1984 Nov; 121(2):334-40. PubMed ID: 6149227
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Archaebacterial elongation factor is ADP-ribosylated by diphtheria toxin.
    Kessel M; Klink F
    Nature; 1980 Sep; 287(5779):250-1. PubMed ID: 6776409
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Reversibility of arginine-specific mono(ADP-ribosyl)ation: identification in erythrocytes of an ADP-ribose-L-arginine cleavage enzyme.
    Moss J; Jacobson MK; Stanley SJ
    Proc Natl Acad Sci U S A; 1985 Sep; 82(17):5603-7. PubMed ID: 2994036
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Saccharopine dehydrogenase. A kinetic study of coenzyme binding.
    Fujioka M; Nakatani Y
    J Biol Chem; 1974 Nov; 249(21):6886-91. PubMed ID: 4153777
    [No Abstract]   [Full Text] [Related]  

  • 73. Purification of a nitric oxide-stimulated ADP-ribosylated protein using biotinylated beta-nicotinamide adenine dinucleotide.
    Zhang J; Snyder SH
    Biochemistry; 1993 Mar; 32(9):2228-33. PubMed ID: 8443164
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Mammalian ADP-ribosyltransferases and ADP-ribosylhydrolases.
    Koch-Nolte F; Kernstock S; Mueller-Dieckmann C; Weiss MS; Haag F
    Front Biosci; 2008 May; 13():6716-29. PubMed ID: 18508690
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Proceedings: Enzymes degrading poly(ADP-ribose) from Physarum polycephalum and Nicotiana tabacum.
    Miwa M; Tanaka M; Shinshi H; Takeuchi M; Matsushima T; Sugimura T; Shall S
    J Biochem; 1975 Jan; 77(1?):3p-4p. PubMed ID: 237001
    [No Abstract]   [Full Text] [Related]  

  • 76. Primary structure of elongation factor 2 around the site of ADP-ribosylation is highly conserved from archaebacteria to eukaryotes.
    Gehrmann R; Henschen A; Klink F
    FEBS Lett; 1985 Jun; 185(1):37-42. PubMed ID: 3996598
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Active-site mutations of diphtheria toxin: role of tyrosine-65 in NAD binding and ADP-ribosylation.
    Blanke SR; Huang K; Collier RJ
    Biochemistry; 1994 Dec; 33(51):15494-500. PubMed ID: 7803411
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Eukaryotic elongation factor 2 loses its non-specific affinity for RNA and leaves polyribosomes as a result of ADP-ribosylation.
    Sitikov AS; Davydova EK; Bezlepkina TA; Ovchinnikov LP; Spirin AS
    FEBS Lett; 1984 Oct; 176(2):406-10. PubMed ID: 6208057
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Uridine diphosphate glucose pyrophosphorylase of Acanthamoeba castellanii. Purification, kinetic, and developmental studies.
    Rudick VL; Weisman RA
    J Biol Chem; 1974 Dec; 249(24):7832-40. PubMed ID: 4430676
    [No Abstract]   [Full Text] [Related]  

  • 80. Active-site mutations of diphtheria toxin: effects of replacing glutamic acid-148 with aspartic acid, glutamine, or serine.
    Wilson BA; Reich KA; Weinstein BR; Collier RJ
    Biochemistry; 1990 Sep; 29(37):8643-51. PubMed ID: 1980208
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.