BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 4361287)

  • 1. The effect of adenosine analogues on the ATP-pyrophosphate exchange reaction catalysed by methionyl-tRNA synthetase.
    Lawrence F; Shire DJ; Waller JP
    Eur J Biochem; 1974 Jan; 41(1):73-81. PubMed ID: 4361287
    [No Abstract]   [Full Text] [Related]  

  • 2. The mechanism of action of methionyl-tRNA synthetase from Escherichia coli. Inhibition by adenosine and 8-aminoadenosine of the amino-acid activation reaction.
    Blanquet S; Fayat G; Poiret M; Waller JP
    Eur J Biochem; 1975 Feb; 51(2):567-71. PubMed ID: 168070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human tryptophanyl transfer ribonucleic acid synthetase. Comparison of the kinetic mechanism to that of the Escherichia coli tryptophanyl transfer ribonucleic acid synthetase.
    Penneys NS; Muench KH
    Biochemistry; 1974 Jan; 13(3):566-71. PubMed ID: 4358952
    [No Abstract]   [Full Text] [Related]  

  • 4. Kinetics of pyrophosphate-ATP exchange catalysed by L-tryptophan: tRNA ligase from Escherichia coli.
    Penzer GR; Plumbridge JA
    Eur J Biochem; 1974 Jun; 45(1):291-5. PubMed ID: 4371652
    [No Abstract]   [Full Text] [Related]  

  • 5. Phenylalanyl-tRNA synthetase from Escherichia coli K10. Synergistic coupling between the sites for binding of L-phenylalanine and ATP.
    Kosakowski HM; Holler E
    Eur J Biochem; 1973 Oct; 38(2):274-82. PubMed ID: 4359386
    [No Abstract]   [Full Text] [Related]  

  • 6. Kinetic scheme and kinetic parameters of the exchange of ATP-32P-pyrophosphates, catalyzed by tryptophanyl-tRNA synthetase from beef pancreas.
    Zinov'ev VV; Kiselev LL; Knorre DG; Kochkina LL; Malygin EG; Slin'ko MG; Timoshenko VI; Favorova OO
    Mol Biol; 1974 Nov; 8(3):303-10. PubMed ID: 4373648
    [No Abstract]   [Full Text] [Related]  

  • 7. Fluorinated tryptophans as substrates and inhibitors of the ATP--(32P)PPi exchange reaction catalysed by tryptophanyl tRNA synthetase.
    Nevinsky GA; Favorova OO; Lavrik OI; Petrova TD; Kochkina LL; Savchenko TI
    FEBS Lett; 1974 Jul; 43(2):135-8. PubMed ID: 4152887
    [No Abstract]   [Full Text] [Related]  

  • 8. Couplings between the sites for methionine and adenosine 5'-triphosphate in the amino acid activation reaction catalyzed by trypsin-modified methionyl-transfer RNA synthetase from Escherichia coli.
    Fayat G; Fromant M; Blanquet S
    Biochemistry; 1977 May; 16(11):2570-9. PubMed ID: 193563
    [No Abstract]   [Full Text] [Related]  

  • 9. The mechanism of action of methionyl-tRNA synthetase from Escherichia coli. Equilibrium-dialysis studies on the binding of methionine, ATP and ATP-Mg2+ by the native and trypsin-modified enzymes.
    Fayat G; Waller JP
    Eur J Biochem; 1974 May; 44(2):335-42. PubMed ID: 4600363
    [No Abstract]   [Full Text] [Related]  

  • 10. Phenylalanyl transfer ribonucleic acid synthetase from Escherichia coli. Analysis of the adenosine triphosphate binding site.
    Santi DV; Danenberg PV; Montgomery KA
    Biochemistry; 1971 Dec; 10(25):4821-4. PubMed ID: 4334587
    [No Abstract]   [Full Text] [Related]  

  • 11. [The formation of ATP from adenosine 5'-phosphoroimidazolide and pyrophosphate catalyzed by valyl-tRNA-synthetase].
    Biriukov AI; Osipova TI; Khomutov RM
    Biokhimiia; 1976 Oct; 41(10):1905-6. PubMed ID: 192333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the beta-phosphate-gamma-phosphate interchange reaction of adenosine triphosphate in amino acid discrimination by valyl- and methionyl-tRNA synthetases from Escherichia coli.
    Smith LT; Cohn M
    Biochemistry; 1981 Jan; 20(2):385-91. PubMed ID: 6258639
    [No Abstract]   [Full Text] [Related]  

  • 13. The mechanism of action of methionyl-tRNA synthetase from Escherichia coli. Mechanism of the amino-acid activation reaction catalyzed by the native and the trypsin-modified enzymes.
    Blanquet S; Fayat G; Waller JP
    Eur J Biochem; 1974 May; 44(2):343-51. PubMed ID: 4365501
    [No Abstract]   [Full Text] [Related]  

  • 14. Methionyl-tRNA synthetase from Escherichia coli: active stoichiometry and stopped-flow analysis of methionyl adenylate formaiton.
    Hyafil F; Jacques Y; Fayat G; Fromant M; Dessen P; Blanquet S
    Biochemistry; 1976 Aug; 15(17):3678-85. PubMed ID: 182214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isoleucyl transfer ribonucleic acid synthetase from Escherichia coli. Effect of limited cleavage by trypsin on activity and structure.
    Piszkiewicz D; Goitein RD
    Biochemistry; 1974 Jun; 13(12):2505-11. PubMed ID: 4364833
    [No Abstract]   [Full Text] [Related]  

  • 16. Kinetic equations for ATP--pyrophosphate exchange catalyzed by aminoacyl-tRNA synthetase.
    Knorre DG; Malygin EG
    Mol Biol; 1971; 5(3):287-90. PubMed ID: 4343100
    [No Abstract]   [Full Text] [Related]  

  • 17. Phenylalanyl-tRNA synthetase from E. coli: synergistic coupling between the sites for binding of L-phenylalanine and ATP.
    Holler E; Bartmann P; Hanke T; Kosakowski HM
    Biochem Biophys Res Commun; 1973 Aug; 53(4):1205-12. PubMed ID: 4584021
    [No Abstract]   [Full Text] [Related]  

  • 18. The aminoacylation of transfer ribonucleic acid. Recognition of methionine by Escherichia coli methionyl-transfer ribonucleic acid synthetase.
    Old JM; Jones DS
    Biochem J; 1977 Aug; 165(2):367-73. PubMed ID: 336037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamyl transfer ribonucleic acid synthetase of Escherichia coli. Study of the interactions with its substrates.
    Kern D; Lapointe J
    Biochemistry; 1979 Dec; 18(26):5809-18. PubMed ID: 229901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the active site topography of isoleucyl transfer ribonucleic acid synthetase of Escherichia coli B.
    Holler E; Rainey P; Orme A; Bennett EL; Calvin M
    Biochemistry; 1973 Mar; 12(6):1150-9. PubMed ID: 4347457
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.