These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 4361895)
1. Molecular mobility of polypeptides containing proline as determined by 13C magnetic resonance. Torchia DA; Lyerla JR Biopolymers; 1974 Jan; 13(1):97-114. PubMed ID: 4361895 [No Abstract] [Full Text] [Related]
2. Intramolecular and overall motion of proline: the influence of viscosity on carbon-13 spin-lattice relaxation times. Deslauriers R; Smith IC Biopolymers; 1977 Jun; 16(6):1245-57. PubMed ID: 195643 [No Abstract] [Full Text] [Related]
3. 1H- and 13C-NMR investigations on cis-trans isomerization of proline peptide bonds and conformation of aromatic side chains in H-Trp-(Pro)n-Tyr-OH peptides. PoznaĆski J; Ejchart A; Wierzchowski KL; Ciurak M Biopolymers; 1993 May; 33(5):781-95. PubMed ID: 8393714 [TBL] [Abstract][Full Text] [Related]
4. Conformational mobility of the pyrrolidine ring of proline in peptides and peptide hormones as manifest in carbon 13 spin-lattice relaxation times. Deslauriers R; Smith IC; Walter R J Biol Chem; 1974 Nov; 249(21):7006-10. PubMed ID: 4371430 [No Abstract] [Full Text] [Related]
5. [Carbon 13 nuclear magnetic resonance conformation studies of peptides with analgesic activity]. Smolders RR; Coomans R; Jacquemotte F; Van Haverbeke Y; Maquestiau A; Muller R Can J Biochem; 1980 Nov; 58(11):1241-6. PubMed ID: 7214191 [TBL] [Abstract][Full Text] [Related]
6. 1H-1H and 13C-13C vicinal coupling constants and amino acid side chain conformation in peptides. Toma F; Monnot M; Piriou F; Savrda J; Fermandjian S Biochem Biophys Res Commun; 1980 Nov; 97(2):751-8. PubMed ID: 7470126 [No Abstract] [Full Text] [Related]
7. [Synthesis of stearoyl derivatives of proline-containing hydrophobic peptides]. Iskhakova FKh; Esipova OV; Zvonkova EN Bioorg Khim; 1995 Aug; 21(8):596-603. PubMed ID: 8540900 [TBL] [Abstract][Full Text] [Related]
8. A 13C spin-lattice relaxation study of dipeptides containing glycine and proline: mobility of the cyclic proline side chain. Fossel ET; Easwaran KR; Blout ER Biopolymers; 1975 May; 14(5):927-35. PubMed ID: 1156651 [No Abstract] [Full Text] [Related]
9. Cyclic peptides. IX. Conformations of a synthetic ion-binding cyclic peptide, cyclo-(pro-gly)3, from circular dichroism and 1H and 13C nuclear magnetic resonance. Madison V; Atreyi M; Deber CM; Blout ER J Am Chem Soc; 1974 Oct; 96(21):6725-34. PubMed ID: 4412689 [No Abstract] [Full Text] [Related]
10. Two- and three-dimensional 1H/13C PISEMA experiments and their application to backbone and side chain sites of amino acids and peptides. Gu ZT; Opella SJ J Magn Reson; 1999 Oct; 140(2):340-6. PubMed ID: 10497041 [TBL] [Abstract][Full Text] [Related]
11. Configurational assignment of carbon, silicon and germanium containing propynal oximes by means of 13C-1H, 13C-13C and 15N-1H spin-spin coupling constants. Chernyshev KA; Krivdin LB; Larina LI; Konkova TV; Demina MM; Medvedeva AS Magn Reson Chem; 2007 Aug; 45(8):661-6. PubMed ID: 17559158 [TBL] [Abstract][Full Text] [Related]
12. Effect of serine O-glycosylation on cis-trans proline isomerization. Pao YL; Wormarld MR; Dwek RA; Lellouch AC Biochem Biophys Res Commun; 1996 Feb; 219(1):157-62. PubMed ID: 8619800 [TBL] [Abstract][Full Text] [Related]
13. Sensitivity enhancement in two-dimensional solid-state NMR spectroscopy by transverse mixing. Tycko R Chemphyschem; 2004 Jun; 5(6):863-8. PubMed ID: 15253312 [TBL] [Abstract][Full Text] [Related]
14. Conformational behavior of poly-N5-(3-hydroxypropyl)-L-glutamine in water-methanol mixtures studied by 13C Nmr and CD spectroscopy. Di Blasi R; Verdini AS Biopolymers; 1974 Nov; 13(11):2209-25. PubMed ID: 4429778 [No Abstract] [Full Text] [Related]
15. 13C-nuclear magnetic resonance study of [85% 13C-enriched proline]thyrotropin releasing factor: 13C-13C vicinal coupling constants and conformation of the proline residue. Haar W; Fermandjian S; Vicar J; Blaha K; Fromageot P Proc Natl Acad Sci U S A; 1975 Dec; 72(12):4948-52. PubMed ID: 813218 [TBL] [Abstract][Full Text] [Related]
16. Development and conformational analysis of a pseudoproline-containing turn mimic. Luppi G; Lanci D; Trigari V; Garavelli M; Garelli A; Tomasini C J Org Chem; 2003 Mar; 68(5):1982-93. PubMed ID: 12608820 [TBL] [Abstract][Full Text] [Related]
17. Conformational dynamics of minimal elastin-like polypeptides: the role of proline revealed by molecular dynamics and nuclear magnetic resonance. Glaves R; Baer M; Schreiner E; Stoll R; Marx D Chemphyschem; 2008 Dec; 9(18):2759-65. PubMed ID: 18972488 [TBL] [Abstract][Full Text] [Related]
18. Residual dipolar couplings in short peptides reveal systematic conformational preferences of individual amino acids. Dames SA; Aregger R; Vajpai N; Bernado P; Blackledge M; Grzesiek S J Am Chem Soc; 2006 Oct; 128(41):13508-14. PubMed ID: 17031964 [TBL] [Abstract][Full Text] [Related]
19. Sequential polypeptides. IV. The synthesis of poly-(L-alanylglycyl-L-proline) and its stereoisomers. Fairweather R; Jones JH J Chem Soc Perkin 1; 1972; 15():1908-15. PubMed ID: 4672378 [No Abstract] [Full Text] [Related]
20. [Solution conformation of bioactive polypeptides]. Sato A; Kobayashi Y Tanpakushitsu Kakusan Koso; 1992 Feb; 37(3 Suppl):480-91. PubMed ID: 1549724 [No Abstract] [Full Text] [Related] [Next] [New Search]