These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 4362737)
1. The detection and characterization by electron-paramagnetic-resonance spectroscopy of iron-sulphur proteins and other electron-transport components in chromatophores from the purple bacterium Chromatium. Evans MC; Lord AV; Reeves SG Biochem J; 1974 Feb; 138(2):177-83. PubMed ID: 4362737 [TBL] [Abstract][Full Text] [Related]
2. Electron spin resonance characterization of Chromatium D hemes, non-heme irons and the components involved in primary photochemistry. Dutton PL; Leigh JS Biochim Biophys Acta; 1973 Aug; 314(2):178-90. PubMed ID: 4355789 [No Abstract] [Full Text] [Related]
3. "Super-reduction" of chromatium high-potential iron-sulphur protein in the presence of dimethyl sulphoxide. Cammack R Biochem Biophys Res Commun; 1973 Sep; 54(2):548-54. PubMed ID: 4356972 [No Abstract] [Full Text] [Related]
4. EPR and optical spectroscopic properties of the electron carrier intermediate between the reaction center bacteriochlorophylls and the primary acceptor in Chromatium vinosum. Tiede DM; Prince RC; Dutton PL Biochim Biophys Acta; 1976 Dec; 449(3):447-67. PubMed ID: 187221 [TBL] [Abstract][Full Text] [Related]
6. Electron-paramagnetic-resonance measurements of the electron-transfer components of the reaction centre of Rhodopseudomonas viridis. Oxidation--reduction potentials and interactions of the electron acceptors. Rutherford AW; Heathcote P; Evans MC Biochem J; 1979 Aug; 182(2):515-23. PubMed ID: 228655 [TBL] [Abstract][Full Text] [Related]
7. Light-induced electron transport in Chromatium strain D. II. Light-induced absorbance changes in Chromatium chromatophores. Cusanovich MA; Bartsch RG; Kamen MD Biochim Biophys Acta; 1968 Feb; 153(2):397-417. PubMed ID: 4296025 [No Abstract] [Full Text] [Related]
8. Electron paramagnetic resonance studies on photosynthetic bacteria. I. Properties of photo-induced EPR-signals of Chromatium D. Schleyer H Biochim Biophys Acta; 1968 Feb; 153(2):427-47. PubMed ID: 4296026 [No Abstract] [Full Text] [Related]
9. Characterization of two soluble ferredoxins as distinct from bound iron-sulfur proteins in the photosynthetic bacterium Rhodospirillum rubrum. Yoch DC; Arnon DI; Sweeney WV J Biol Chem; 1975 Nov; 250(21):8330-6. PubMed ID: 172494 [TBL] [Abstract][Full Text] [Related]
10. Mössbauer effect in the 'super-reduced' form of the high-potential iron-sulphur protein from Chromatium. Dickson DP; Cammack R Biochem J; 1974 Dec; 143(3):763-5. PubMed ID: 4376953 [TBL] [Abstract][Full Text] [Related]
11. Low-temperature magnetic circular dichroism spectra and magnetisation curves of 4Fe clusters in iron-sulphur proteins from Chromatium and Clostridium pasteurianum. Johnson MK; Thomson AJ; Robinson AE; Rao KK; Hall DO Biochim Biophys Acta; 1981 Feb; 667(2):433-51. PubMed ID: 6260220 [TBL] [Abstract][Full Text] [Related]
12. Iron-sulfur proteins of the green photosynthetic bacterium Chlorobium. Knaff DB; Malkin R Biochim Biophys Acta; 1976 May; 430(2):244-52. PubMed ID: 6060 [TBL] [Abstract][Full Text] [Related]
13. The redox properties of the iron-sulphur cluster in hydrogenase from Chromatium vinosum, strain D. Cammack R; Rao KK; Serra J; Llama MJ Biochimie; 1986 Jan; 68(1):93-6. PubMed ID: 3015252 [TBL] [Abstract][Full Text] [Related]
14. The iron electron-nuclear double resonance (ENDOR) of 4-Fe clusters in iron-sulfur proteins from Chromatium and Clostridium pasteurianum. Anderson RE; Anger G; Petersson L; Ehrenberg A; Cammack R; Hall DO; Mullinger R; Rao KK Biochim Biophys Acta; 1975 Jan; 376(1):63-71. PubMed ID: 164903 [TBL] [Abstract][Full Text] [Related]
15. Spectroscopic characterization of the nickel and iron-sulphur clusters of hydrogenase from the purple photosynthetic bacterium Thiocapsa roseopersicina. 1. Electron spin resonance spectroscopy. Cammack R; Bagyinka C; Kovacs KL Eur J Biochem; 1989 Jun; 182(2):357-62. PubMed ID: 2544424 [TBL] [Abstract][Full Text] [Related]
16. The primary electron acceptor in photosynthesis. Leigh JS; Dutton PL Biochem Biophys Res Commun; 1972 Jan; 46(2):414-21. PubMed ID: 4333415 [No Abstract] [Full Text] [Related]
17. Some effects of o-phenanthroline on electron transport in chromatophores from photosynthetic bacteria. Jackson JB; Cogdell RJ; Crofts AR Biochim Biophys Acta; 1973 Jan; 292(1):218-25. PubMed ID: 4705131 [No Abstract] [Full Text] [Related]
18. Determination of the oxidation-reduction potential of the bound iron-sulphur proteins of the primary electron acceptor complex of photosystem I in spinach chloroplasts. Evans MC; Reeves SG; Cammack R FEBS Lett; 1974 Dec; 49(1):111-4. PubMed ID: 4374381 [No Abstract] [Full Text] [Related]
19. Light-induced electron transefer in Chromatium strain D. 3. Photophosphorylation by Chromatium chromatophores. Cusanovich MA; Kamen MD Biochim Biophys Acta; 1968 Feb; 153(2):418-26. PubMed ID: 4384457 [No Abstract] [Full Text] [Related]
20. Magnetic studies of the four-iron high-potential, non-heme protein from Chromatium vinosum. Antanaitis BC; Moss TH Biochim Biophys Acta; 1975 Oct; 405(2):262-79. PubMed ID: 170982 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]