These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 4364332)
1. Characteristics and relationships of mercury-resistant mutants and methionine auxotrophs of yeast. Singh A; Sherman F J Bacteriol; 1974 Jun; 118(3):911-8. PubMed ID: 4364332 [TBL] [Abstract][Full Text] [Related]
2. Genetic and physiological characterization of met15 mutants of Saccharomyces cerevisiae: a selective system for forward and reverse mutations. Singh A; Sherman F Genetics; 1975 Sep; 81(1):75-97. PubMed ID: 1107143 [TBL] [Abstract][Full Text] [Related]
3. Role of hydrosulfide ions (HS-) in methylmercury resistance in Saccharomyces cerevisiae. Ono B; Ishii N; Fujino S; Aoyama I Appl Environ Microbiol; 1991 Nov; 57(11):3183-6. PubMed ID: 1781681 [TBL] [Abstract][Full Text] [Related]
4. Association of methionine requirement with methyl mercury resistant mutants of yeast. Singh A; Sherman F Nature; 1974 Jan; 247(5438):227-9. PubMed ID: 4589576 [No Abstract] [Full Text] [Related]
5. A useful colony colour phenotype associated with the yeast selectable/counter-selectable marker MET15. Cost GJ; Boeke JD Yeast; 1996 Aug; 12(10):939-41. PubMed ID: 8873447 [TBL] [Abstract][Full Text] [Related]
6. Spontaneous auxotrophic and pigmented mutants occurring at high frequency in Bacillus pumilus NRRL B-3275. Lovett PS J Bacteriol; 1972 Nov; 112(2):977-85. PubMed ID: 4343826 [TBL] [Abstract][Full Text] [Related]
7. Disrupting the methionine biosynthetic pathway in Candida guilliermondii: characterization of the MET2 gene as counter-selectable marker. Obando Montoya EJ; Mélin C; Blanc N; Lanoue A; Foureau E; Boudesocque L; Prie G; Simkin AJ; Crèche J; Atehortùa L; Giglioli-Guivarc'h N; Clastre M; Courdavault V; Papon N Yeast; 2014 Jul; 31(7):243-51. PubMed ID: 24700391 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of mercuric chloride resistance in microorganisms. I. Vaporization of a mercury compound from mercuric chloride by multiple drug resistant strains of Escherichia coli. Komura I; Izaki K J Biochem; 1971 Dec; 70(6):885-93. PubMed ID: 4947308 [No Abstract] [Full Text] [Related]
9. Temperature-sensitive mutants of Saccharomyces cerevisiae variable in the methionine content of their protein. Momose H; Gregory KF Appl Environ Microbiol; 1978 Apr; 35(4):641-7. PubMed ID: 348105 [TBL] [Abstract][Full Text] [Related]
10. Role of cell wall in Saccharomyces cerevisiae mutants resistant to Hg2+. Ono B; Ohue H; Ishihara F J Bacteriol; 1988 Dec; 170(12):5877-82. PubMed ID: 3056920 [TBL] [Abstract][Full Text] [Related]
11. Studies on energy-linked reactions. Isolation and characterisation of oligomycin-resistant mutants of Saccharomyces cerevisiae. Avner PR; Griffiths DE Eur J Biochem; 1973 Jan; 32(2):301-11. PubMed ID: 4569077 [No Abstract] [Full Text] [Related]
12. Biosynthesis of sulphur amoni acids in Saccharomyces cerevisiae. I. Genetic analysis of leaky mutants of sulphite reductase. Zambonelli C; Mutinelli P Arch Microbiol; 1975 Mar; 102(3):247-51. PubMed ID: 1098599 [TBL] [Abstract][Full Text] [Related]
13. Mutants of yeast defective in iso-1-cytochrome c. Sherman F; Stewart JW; Jackson M; Gilmore RA; Parker JH Genetics; 1974 Jun; 77(2):255-84. PubMed ID: 4367877 [TBL] [Abstract][Full Text] [Related]
14. On the illusion of auxotrophy: met15Δ yeast cells can grow on inorganic sulfur, thanks to the previously uncharacterized homocysteine synthase Yll058w. Van Oss SB; Parikh SB; Castilho Coelho N; Wacholder A; Belashov I; Zdancewicz S; Michaca M; Xu J; Kang YP; Ward NP; Yoon SJ; McCourt KM; McKee J; Ideker T; VanDemark AP; DeNicola GM; Carvunis AR J Biol Chem; 2022 Dec; 298(12):102697. PubMed ID: 36379252 [TBL] [Abstract][Full Text] [Related]
15. Pathways of ultraviolet mutability in Saccharomyces cerevisiae. III. Genetic analysis and properties of mutants resitant to ultraviolet-induced forward mutation. Lemontt JF Mutat Res; 1977 May; 43(2):179-204. PubMed ID: 325400 [No Abstract] [Full Text] [Related]
16. Peptide utilization in yeast. Studies on methionine and lysine auxotrophs of Saccharomyces cerevisiae. Becker JM; Naider F; Katchalski E Biochim Biophys Acta; 1973 Jan; 291(2):388-97. PubMed ID: 4570568 [No Abstract] [Full Text] [Related]
17. S-adenosyl methionine requiring mutants in Saccharomyces cerevisiae: evidences for the existence of two methionine adenosyl transferases. Cherest H; Surdin-Kerjan Y Mol Gen Genet; 1978 Jul; 163(2):153-67. PubMed ID: 355845 [TBL] [Abstract][Full Text] [Related]
18. Effect of mercury and organomercurials on cellular glucose utilization: a study using resting mercury-resistant yeast cells. Ghosh SK; Chaudhuri J; Gachhui R; Mandal A; Ghosh S J Appl Microbiol; 2007 Feb; 102(2):375-83. PubMed ID: 17241342 [TBL] [Abstract][Full Text] [Related]
19. Methyl-deficient transfer ribonucleic acid and macromolecular synthesis in methionine-starved Saccharomyces cerevisiae. Kjellin-Stråby K; Phillips JH J Bacteriol; 1969 Nov; 100(2):679-86. PubMed ID: 5354939 [TBL] [Abstract][Full Text] [Related]
20. [Biomass production enriched in intracellular methionine by a mutant of Saccharomyces cerevisiae]. Albornoz IJ; Sánchez Crispin JA; Moreno R Acta Cient Venez; 1993; 44(5):307-11. PubMed ID: 7483968 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]