These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 4364616)

  • 1. The conformation of oxytocin in dimethylsulfoxide as revealed by carbon-13 spin-lattice relaxation times.
    Walter R; Smith IC; Deslauriers R
    Biochem Biophys Res Commun; 1974 May; 58(1):216-21. PubMed ID: 4364616
    [No Abstract]   [Full Text] [Related]  

  • 2. Carbon-13 NMR studies of peptide hormones and their components.
    Smith IC; Deslauriers R; Saitô H; Walter R; Garrigou-Lagrange C; McGregor H; Sarantakis D
    Ann N Y Acad Sci; 1973 Dec; 222():597-627. PubMed ID: 4361873
    [No Abstract]   [Full Text] [Related]  

  • 3. Conformational mobility of the pyrrolidine ring of proline in peptides and peptide hormones as manifest in carbon 13 spin-lattice relaxation times.
    Deslauriers R; Smith IC; Walter R
    J Biol Chem; 1974 Nov; 249(21):7006-10. PubMed ID: 4371430
    [No Abstract]   [Full Text] [Related]  

  • 4. Carbon-13 spin-lattice relaxation studies of intramolecular motion in lysine and a series of oligolysines.
    Saito H; Smith IC
    Arch Biochem Biophys; 1974 Aug; 163(2):699-704. PubMed ID: 4369827
    [No Abstract]   [Full Text] [Related]  

  • 5. Conformational flexibility of the neurohypophyseal hormones oxytocin and lysine-vasopressin. A carbon-13 spin-lattice relaxation study of backbone and side chains.
    Deslauriers R; Smith CP; Walter R
    J Am Chem Soc; 1974 Apr; 96(7):2289-91. PubMed ID: 4364949
    [No Abstract]   [Full Text] [Related]  

  • 6. Spectral assignment and conformational analysis of cyclic peptides by carbon-13 nuclear magnetic resonance.
    Lyerla JR; Freedman MH
    J Biol Chem; 1972 Dec; 247(24):8183-92. PubMed ID: 4640941
    [No Abstract]   [Full Text] [Related]  

  • 7. Nuclear magnetic resonance spectroscopy: reinvestigation of carbon-13 spin-lattice relaxation time measurements of amino acids.
    Pearson H; Gust D; Armitage IM; Huber H; Roberts JD; Stark RE; Vold RR; Vold RL
    Proc Natl Acad Sci U S A; 1975 Apr; 72(4):1599-601. PubMed ID: 165516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational flexibility of angiotensin II. A carbon-13 spin-lattice relaxation study.
    Deslauriers R; Paiva AC; Schaumburg K; Smith IC
    Biochemistry; 1975 Mar; 14(5):878-86. PubMed ID: 164885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of 13C spin-lattice relaxation times in phospholipid vesicles and mutilayers.
    Gent MP; Prestegard JH
    Biochem Biophys Res Commun; 1974 Jun; 58(3):549-55. PubMed ID: 4365408
    [No Abstract]   [Full Text] [Related]  

  • 10. Pulsed NMR methods for the observation and assignment of exchangeable hydrogens: application to bacitracin.
    Campbell ID; Dobson CM; Jeminet G; Williams RJ
    FEBS Lett; 1974 Dec; 49(1):115-9. PubMed ID: 4442586
    [No Abstract]   [Full Text] [Related]  

  • 11. Unequivocal assignments of NH proton magnetic resonance bands in oxytocin using 2H- and 15N-substituted molecules.
    Bradbury AF; Burgen AS; Feeney J; Roberts GC; Smyth DG
    FEBS Lett; 1974 Jun; 42(2):179-82. PubMed ID: 4855316
    [No Abstract]   [Full Text] [Related]  

  • 12. Conformational studies of oxytocin, lysine vasopressin, arginine vasopressin, and arginine vasotocin by carbon-13 nuclear magnetic resonance spectroscopy.
    Walter R; Prasad KU; Deslauriers R; Smith IC
    Proc Natl Acad Sci U S A; 1973 Jul; 70(7):2086-90. PubMed ID: 4516207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformation of lysine vasopressin: a comparison with oxytocin.
    Walter R; Glickson JD; Schwartz IL; Havran RT; Meienhofer J; Urry DW
    Proc Natl Acad Sci U S A; 1972 Jul; 69(7):1920-4. PubMed ID: 4505670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intramolecular and overall motion of proline: the influence of viscosity on carbon-13 spin-lattice relaxation times.
    Deslauriers R; Smith IC
    Biopolymers; 1977 Jun; 16(6):1245-57. PubMed ID: 195643
    [No Abstract]   [Full Text] [Related]  

  • 15. Recent developments in the investigation of the paramagnetic centers in low-spin ferric hemoproteins: carbon-13 hyperfine shifts in iron porphyrin complexes.
    Wüthrich K; Baumann R
    Ann N Y Acad Sci; 1973 Dec; 222():709-21. PubMed ID: 4522441
    [No Abstract]   [Full Text] [Related]  

  • 16. The use of 13C spin lattice relaxation times to study the interaction of alpha-methyl-D-glucopyranoside with concanavalin A.
    Villafranca JJ; Viola RE
    Arch Biochem Biophys; 1974 Feb; 160(2):465-8. PubMed ID: 4364767
    [No Abstract]   [Full Text] [Related]  

  • 17. A carbon-13 nuclear magnetic resonance study of oxytocin and its oligopeptides.
    Deslauriers R; Walter R; Smith IC
    Biochem Biophys Res Commun; 1972 Aug; 48(4):854-9. PubMed ID: 4636649
    [No Abstract]   [Full Text] [Related]  

  • 18. 13 C-nuclear magnetic resonance and x-ray photoelectron spectroscopy of Cu-AMP.
    Weser U; Strobel GJ; Voelter W
    FEBS Lett; 1974 May; 41(2):243-7. PubMed ID: 4855441
    [No Abstract]   [Full Text] [Related]  

  • 19. Method for correlation of proton magnetic resonance assignments in different solvents: conformational transition of oxytocin and lysine vasopressin from dimethylsulfoxide to water.
    Glickson JD; Urry DW; Walter R
    Proc Natl Acad Sci U S A; 1972 Sep; 69(9):2566-9. PubMed ID: 4506776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton nuclear-magnetic-resonance study of low-spin ferriprotoporphyrin(IX) dimethyl ester.
    Goldammer EV; Zorn H
    Eur J Biochem; 1975 Sep; 57(1):291-300. PubMed ID: 170112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.