BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 4364777)

  • 1. Effect of magnesium adenosine 5'-triphosphate on the accessibility of the iron of clostridial azoferredoxin, a component of nitrogenase.
    Walker GA; Mortenson LE
    Biochemistry; 1974 May; 13(11):2382-8. PubMed ID: 4364777
    [No Abstract]   [Full Text] [Related]  

  • 2. Electron-paramagnetic-resonance studies on nitrogenase. Investigation of the oxidation-reduction behaviour of azoferredoxin and molybdoferredoxin with potentiometric and rapid-freeze techniques.
    Zumft WG; Mortenson LE; Palmer G
    Eur J Biochem; 1974 Aug; 46(3):525-35. PubMed ID: 4368670
    [No Abstract]   [Full Text] [Related]  

  • 3. Evidence for the existence of a fully reduced state of molybdoferredoxin during the functioning of nitrogenase, and the order of electron transfer from reduced ferredoxin.
    Walker MN; Mortenson LE
    J Biol Chem; 1974 Oct; 249(19):6356-8. PubMed ID: 4370921
    [No Abstract]   [Full Text] [Related]  

  • 4. Electron paramagnetic resonance studies on nitrogenase. 3. Function of magnesium adenosine 5'-triphosphate and adenosine 5'-diphosphate in catalysis by nitrogenase.
    Mortenson LE; Zumpft WG; Palmer G
    Biochim Biophys Acta; 1973 Feb; 292(2):422-35. PubMed ID: 4349920
    [No Abstract]   [Full Text] [Related]  

  • 5. An effect of magnesium adenosine 5'-triphosphate on the structure of azoferredoxin from Clostridium pasteurianum.
    Walker GA; Mortenson LE
    Biochem Biophys Res Commun; 1973 Aug; 53(3):904-9. PubMed ID: 4731956
    [No Abstract]   [Full Text] [Related]  

  • 6. Electron paramagnetic resonance studies on nitrogenase. II. Interaction of adenosine 5'-triphosphate with azoferredoxin.
    Zumft WG; Palmer G; Mortenson LE
    Biochim Biophys Acta; 1973 Feb; 292(2):413-21. PubMed ID: 4349919
    [No Abstract]   [Full Text] [Related]  

  • 7. Nitrogenase.
    Eady RR; Postgate JR
    Nature; 1974 Jun; 249(460):805-10. PubMed ID: 4134899
    [No Abstract]   [Full Text] [Related]  

  • 8. On the structure and function of nitrogenase from Clostridium pasteurianum W5.
    Zumft WG; Cretney WC; Huang TC; Mortenson LE; Palmer G
    Biochem Biophys Res Commun; 1972 Sep; 48(6):1525-32. PubMed ID: 4342714
    [No Abstract]   [Full Text] [Related]  

  • 9. The chemistry and biochemistry of nitrogen.
    Pratt JM
    Horiz Biochem Biophys; 1978; 5():119-60. PubMed ID: 98424
    [No Abstract]   [Full Text] [Related]  

  • 10. Nitrogenase. II. Changes in the EPR signal of component I (iron-molybdenum protein) of Azotobacter vinelandii nitrogenase during repression and derepression.
    Davis LC; Shah VK; Brill WJ; Orme-Johnson WH
    Biochim Biophys Acta; 1972 Feb; 256(2):512-23. PubMed ID: 4335840
    [No Abstract]   [Full Text] [Related]  

  • 11. Catalysis of exchange of terminal phosphate groups of ATP and ADP by purified nitrogenase proteins.
    Miller RW; Robson RL; Yates MG; Eady RR
    Can J Biochem; 1980 Jul; 58(7):542-8. PubMed ID: 7004607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of carbamyl phosphate inhibition of nitrogenase of Clostridium pasteurianum.
    Seto BL; Mortenson LE
    J Bacteriol; 1974 Feb; 117(2):805-12. PubMed ID: 4811545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation reduction properties of nitrogenase from Clostridium pasteurianum W5.
    Walker M; Mortenson LE
    Biochem Biophys Res Commun; 1973 Sep; 54(2):669-76. PubMed ID: 4756793
    [No Abstract]   [Full Text] [Related]  

  • 14. In vivo kinetics of nitrogenase formation in Clostridium pasteurianum.
    Seto B; Mortenson LE
    J Bacteriol; 1974 Nov; 120(2):822-30. PubMed ID: 4218235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and function of nitrogenase.
    Mortenson LE; Thorneley RN
    Annu Rev Biochem; 1979; 48():387-418. PubMed ID: 224803
    [No Abstract]   [Full Text] [Related]  

  • 16. Some properties of the nitrogenase proteins from Clostridium pasteurianum. Molecular weight, subunit structure, isoelectric point and EPR spectra.
    Tso MY
    Arch Microbiol; 1974; 99(1):71-80. PubMed ID: 4369192
    [No Abstract]   [Full Text] [Related]  

  • 17. Evidence for electron transfer from the nitrogenase iron protein to the molybdenum-iron protein without MgATP hydrolysis: characterization of a tight protein-protein complex.
    Lanzilotta WN; Fisher K; Seefeldt LC
    Biochemistry; 1996 Jun; 35(22):7188-96. PubMed ID: 8679547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The [4Fe-4S] cluster domain of the nitrogenase iron protein facilitates conformational changes required for the cooperative binding of two nucleotides.
    Ryle MJ; Seefeldt LC
    Biochemistry; 1996 Dec; 35(49):15654-62. PubMed ID: 8961928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP hydrolysis and electron transfer in the nitrogenase reaction with different combinations of the iron protein and the molybdenum-iron protein.
    Ljones T; Burris RH
    Biochim Biophys Acta; 1972 Jul; 275(1):93-101. PubMed ID: 5049020
    [No Abstract]   [Full Text] [Related]  

  • 20. The effect of reductant in inorganic phosphate release from adenosine 5'-triphosphate by purified nitrogenase of Clostridium pasteurianum.
    Jeng DY; Morris JA; Mortenson LE
    J Biol Chem; 1970 Jun; 245(11):2809-13. PubMed ID: 5423376
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.