These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 4365207)

  • 21. The interaction between the mitochondrial ATPase (F 1 ) and the ATPase inhibitor.
    van de Stadt RJ; de Boer BL; van Dam K
    Biochim Biophys Acta; 1973 Feb; 292(2):338-49. PubMed ID: 4349916
    [No Abstract]   [Full Text] [Related]  

  • 22. Regulation of cellular energy metabolism.
    Erecińska M; Wilson DF
    J Membr Biol; 1982; 70(1):1-14. PubMed ID: 6226798
    [No Abstract]   [Full Text] [Related]  

  • 23. [Study of respiration and phosphorylation in the skeletal muscle mitochondria in the surgical wound area].
    Rudichenko VF
    Grudn Khir; 1974; (6):70-3. PubMed ID: 4448400
    [No Abstract]   [Full Text] [Related]  

  • 24. The nature of electron transfer and energy coupling reactions.
    Chance B
    FEBS Lett; 1972 Jun; 23(1):3-20. PubMed ID: 4343618
    [No Abstract]   [Full Text] [Related]  

  • 25. Differential effects of adenylyl imidodiphosphate on adenosine triphosphate synthesis and the partial reactions of oxidative phosphorylation.
    Penefsky HS
    J Biol Chem; 1974 Jun; 249(11):3579-85. PubMed ID: 4364660
    [No Abstract]   [Full Text] [Related]  

  • 26. Arsenate and phosphate as modifiers of adenosine triphosphate driven energy-linked reduction. Kinetic study of the effects of modifiers on inhibition by adenosine diphosphate.
    Huang CH; Mitchell RA
    Biochemistry; 1972 Jun; 11(12):2278-83. PubMed ID: 4337612
    [No Abstract]   [Full Text] [Related]  

  • 27. Theoretical studies on the control of oxidative phosphorylation in muscle mitochondria: application to mitochondrial deficiencies.
    Korzeniewski B; Mazat JP
    Biochem J; 1996 Oct; 319 ( Pt 1)(Pt 1):143-8. PubMed ID: 8870661
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of hydrogen ions on the control of mitochondrial respiration.
    Lowenstein JM; Chance B
    J Biol Chem; 1968 Jul; 243(14):3940-6. PubMed ID: 4385607
    [No Abstract]   [Full Text] [Related]  

  • 29. Metabolic effects of lowering oxygen tension in vivo.
    Wilson DF; Erecinska M; Silver IA
    Adv Exp Med Biol; 1983; 159():293-301. PubMed ID: 6314777
    [No Abstract]   [Full Text] [Related]  

  • 30. [Proceedings: Effect of carnitine on oxidation of endogenous fatty acids in heart sarcosomes].
    Moratti R; Montani A; Ruffo A
    Quad Sclavo Diagn; 1973 Mar; 9(1):586-94. PubMed ID: 4788730
    [No Abstract]   [Full Text] [Related]  

  • 31. The properties of dicyclohexylcarbodiimide as an inhibitor of oxidative phosphorylation.
    Beechey RB; Roberton AM; Holloway CT; Knight IG
    Biochemistry; 1967 Dec; 6(12):3867-79. PubMed ID: 4294775
    [No Abstract]   [Full Text] [Related]  

  • 32. The mechanochemical activity of the mitochondria: an assessment.
    Moravec J; Hatt PY
    J Mol Cell Cardiol; 1972 Apr; 4(2):91-6. PubMed ID: 5027353
    [No Abstract]   [Full Text] [Related]  

  • 33. [Energy metabolism of right ventricular myocardium following section of the left coronary artery].
    Razumnaia NM
    Kardiologiia; 1973 Mar; 13(3):62-6. PubMed ID: 4717187
    [No Abstract]   [Full Text] [Related]  

  • 34. Interactions of reduced and oxidized triphosphopyridine nucleotides with the electron-transport system of bovine heart mitochondria.
    Hatefi Y; Hanstein WG
    Biochemistry; 1973 Aug; 12(18):3515-22. PubMed ID: 4147216
    [No Abstract]   [Full Text] [Related]  

  • 35. Certain biochemical and ultrastructural features of the ventricular myocardium following cardiac denervation.
    Chernukh AM; Chernysheva GV; Kopteva LA
    Circ Res; 1974 Sep; 35 Suppl 3():99-108. PubMed ID: 4369839
    [No Abstract]   [Full Text] [Related]  

  • 36. Chemical and chemiosmotic aspects of electron transport-linked phosphorylation.
    Ernster L
    Annu Rev Biochem; 1977; 46():981-95. PubMed ID: 20042
    [No Abstract]   [Full Text] [Related]  

  • 37. Rate-controlling steps of oxidative phosphorylation in rat liver mitochondria. A synoptic approach of model and experiment.
    Bohnensack R; Küster U; Letko G
    Biochim Biophys Acta; 1982 Jun; 680(3):271-80. PubMed ID: 7104323
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of the local anesthetic bupivacaine on mitochondrial energy metabolism: change from uncoupling to decoupling depending on the respiration state.
    Sztark F; Ouhabi R; Dabadie P; Mazat JP
    Biochem Mol Biol Int; 1997 Dec; 43(5):997-1003. PubMed ID: 9415808
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Theoretical studies on the regulation of oxidative phosphorylation in intact tissues.
    Korzeniewski B
    Biochim Biophys Acta; 2001 Mar; 1504(1):31-45. PubMed ID: 11239483
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Purification and properties of a new coupling factor required for oxidative phosphorylation in silicotungstate-treated submitochondrial particles.
    Fessenden-Raden JM
    J Biol Chem; 1972 Apr; 247(8):2351-7. PubMed ID: 4336371
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.