These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 4366146)

  • 1. Effects of membrane steroid modification on human erythrocyte glucose transport.
    Masiak SJ; LeFevre PG
    Arch Biochem Biophys; 1974 Jun; 162(2):442-7. PubMed ID: 4366146
    [No Abstract]   [Full Text] [Related]  

  • 2. A study of the dependence of the human erythrocyte glucose transport system on membrane sulfhydryl groups.
    Smith RP; Ellman GL
    J Membr Biol; 1973; 12(2):177-88. PubMed ID: 4205085
    [No Abstract]   [Full Text] [Related]  

  • 3. Influence of membrane lipid fluidity on glucose and uridine facilitated diffusion in human erythrocytes.
    Read BD; McElhaney RN
    Biochim Biophys Acta; 1976 Jan; 419(2):331-41. PubMed ID: 1247559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose transport in white erythrocyte ghosts and membrane-derived vesicles.
    Taverna RD; Langdon RG
    Biochim Biophys Acta; 1973 Mar; 298(2):422-8. PubMed ID: 4719139
    [No Abstract]   [Full Text] [Related]  

  • 5. The effect of partial replacements of membrane cholesterol by other steroids on the osmotic fragility and glycerol permeability of erythrocytes.
    Bruckdorfer KR; Demel RA; De Gier J; van Deenen LL
    Biochim Biophys Acta; 1969 Jul; 183(2):334-45. PubMed ID: 5792244
    [No Abstract]   [Full Text] [Related]  

  • 6. Reversible association of cytochalasin B with the human erythrocyte membrane. Inhibition of glucose transport and the stoichiometry of cytochalasin binding.
    Taverna RD; Langdon RG
    Biochim Biophys Acta; 1973 Oct; 323(2):207-19. PubMed ID: 4752283
    [No Abstract]   [Full Text] [Related]  

  • 7. D-glucosyl isothiocyanate, an affinity label for the glucose transport proteins of the human erythrocyte membrane.
    Taverna RD; Langdon RG
    Biochem Biophys Res Commun; 1973 Sep; 54(2):593-9. PubMed ID: 4756788
    [No Abstract]   [Full Text] [Related]  

  • 8. Anomalous transport kinetics and the glucose carrier hypothesis.
    Regen DM; Tarpley HL
    Biochim Biophys Acta; 1974 Mar; 339(2):218-33. PubMed ID: 4827852
    [No Abstract]   [Full Text] [Related]  

  • 9. Changes of membrane permeability due to extensive cholesterol depletion in mammalian erythrocytes.
    Grunze M; Deuticke B
    Biochim Biophys Acta; 1974 Jul; 356(1):125-30. PubMed ID: 4842691
    [No Abstract]   [Full Text] [Related]  

  • 10. The exchange and maximal net flux of glucose across the human erythrocyte. II. The effect of two sulphydryl enzyme inhibitors, chlormerodrin and p-chloromercuribenzene sulfonic acid.
    Zipper H; Mawe RC
    Biochim Biophys Acta; 1974 Jul; 356(2):207-18. PubMed ID: 4854826
    [No Abstract]   [Full Text] [Related]  

  • 11. Glycine transport by membrane vesicles from pigeon red cells.
    Lee JW; Beygu-Farber S; Vidaver GA
    Biochim Biophys Acta; 1973 Mar; 298(2):446-59. PubMed ID: 4737016
    [No Abstract]   [Full Text] [Related]  

  • 12. Changes of nonelectrolyte permeability in cholesterol-loaded erythrocytes.
    Deuticke B; Ruska C
    Biochim Biophys Acta; 1976 May; 433(3):638-53. PubMed ID: 1276196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of cholesterol on the reconstituted D-glucose transport system of human erythrocyte membranes.
    Fröman G
    Tokai J Exp Clin Med; 1982; 7 Suppl():131-3. PubMed ID: 6892255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of interactions between surfactants and the human erythrocyte membrane.
    Bonsall RW; Hunt S
    Biochim Biophys Acta; 1971 Oct; 249(1):266-80. PubMed ID: 5141131
    [No Abstract]   [Full Text] [Related]  

  • 15. A new method for measuring glucose translocation through biological membranes and its application to human erythrocyte ghosts.
    Taverna RD; Langdon RG
    Biochim Biophys Acta; 1973 Mar; 298(2):412-21. PubMed ID: 4719138
    [No Abstract]   [Full Text] [Related]  

  • 16. An analysis of the apparent parameters of the glucose transport system in the red cell membrane.
    Bolis L; Luly P; Becker C; Wilbrandt W
    Biochim Biophys Acta; 1973 Aug; 318(2):289-96. PubMed ID: 4745322
    [No Abstract]   [Full Text] [Related]  

  • 17. Effect of exogenous lipids incorporated into the membrane of human erythrocytes on its glucose transport activity.
    Fujii T; Tamura A; Fujii H; Miwa I; Okuda J
    Biochem Int; 1986 Jun; 12(6):873-9. PubMed ID: 3741447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the mechanism and reversal of the phospholipase-A2 inactivation of D-glucose uptake by isolated human erythrocyte membranes.
    Banjo B; Walker C; Rohrlick R; Kahlenberg A
    Can J Biochem; 1974 Dec; 52(12):1097-109. PubMed ID: 4475610
    [No Abstract]   [Full Text] [Related]  

  • 19. D-glucose uptake by isolated human erythrocyte membranes versus D-glucose transport by human erythrocytes. Comparison of the effects of proteolytic and phospholipase A 2 digestion.
    Kahlenberg A; Dolansky D; Rohrlick R
    J Biol Chem; 1972 Jul; 247(14):4572-6. PubMed ID: 5043855
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of proteolytic digestion on glucose transport carrier of human erythrocyte ghosts.
    Jung CY; Carlson LM; Balzer CJ
    Biochim Biophys Acta; 1973 Feb; 298(1):108-14. PubMed ID: 4707609
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.