BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 4366379)

  • 1. The role of the membrane in the utilization of nucleic acid precursors.
    Hochstadt J
    CRC Crit Rev Biochem; 1974 Mar; 2(2):259-310. PubMed ID: 4366379
    [No Abstract]   [Full Text] [Related]  

  • 2. The effects of bases and nucleosides on the intracellular contents of nucleotides and 5-phosphoribosyl 1-pyrophosphate in Escherichia coli.
    Bagnara AS; Finch LR
    Eur J Biochem; 1974 Feb; 41(3):421-30. PubMed ID: 4361644
    [No Abstract]   [Full Text] [Related]  

  • 3. The regulation of purine utilization in bacteria. III. The involvement of purine phosphoribosyltransferases in the uptake of adenine and other nucleic acid precursors by intact resting cells.
    Hochstadt-Ozer J; Stadtman ER
    J Biol Chem; 1971 Sep; 246(17):5312-20. PubMed ID: 4328695
    [No Abstract]   [Full Text] [Related]  

  • 4. The regulation of purine utilization in bacteria. IV. Roles of membrane-localized and pericytoplasmic enzymes in the mechanism of purine nucleoside transport across isolated Escherichia coli membranes.
    Hochstadt-Ozer J
    J Biol Chem; 1972 Apr; 247(8):2419-26. PubMed ID: 4336374
    [No Abstract]   [Full Text] [Related]  

  • 5. Degradation of nucleic acid derivatives by rumen bacteria in vitro.
    McAllan AB; Smith RH
    Br J Nutr; 1973 May; 29(3):467-74. PubMed ID: 4715154
    [No Abstract]   [Full Text] [Related]  

  • 6. Chinese hamster cells exhibiting a temperature dependent alteration in purine transport.
    Harris JF; Whitmore GF
    J Cell Physiol; 1974 Feb; 83(1):43-51. PubMed ID: 4855909
    [No Abstract]   [Full Text] [Related]  

  • 7. Specificity and control of uptake of purines and other compounds in Bacillus subtilis.
    Beaman TC; Hitchins AD; Ochi K; Vasantha N; Endo T; Freese E
    J Bacteriol; 1983 Dec; 156(3):1107-17. PubMed ID: 6417108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Requirements of Acholeplasma laidlawii A, strain LA 1, for nucleic acid precursors.
    Liska B; Smith PF
    Folia Microbiol (Praha); 1974; 19(2):107-17. PubMed ID: 4471597
    [No Abstract]   [Full Text] [Related]  

  • 9. Uptake and accumulation of purine bases by stationary yeast cells pretreated with glucose.
    Reichert U; Winter M
    Biochim Biophys Acta; 1974 Jul; 356(1):108-16. PubMed ID: 4366819
    [No Abstract]   [Full Text] [Related]  

  • 10. Purine and pyrimidine transport by cultured Novikoff cells. Specificities and mechanism of transport and relationship to phosphoribosylation.
    Zylka JM; Plagemann PG
    J Biol Chem; 1975 Aug; 250(15):5756-67. PubMed ID: 168203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic fate of pyrimidines and purines in dietary nucleic acids ingested by mice.
    Sonoda T; Tatibana M
    Biochim Biophys Acta; 1978 Nov; 521(1):55-66. PubMed ID: 718937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guanine phosphoribosyltransferase from Escherichia coli, specificity and properties.
    Miller RL; Ramsey GA; Krenitsky TA; Elion GB
    Biochemistry; 1972 Dec; 11(25):4723-31. PubMed ID: 4347700
    [No Abstract]   [Full Text] [Related]  

  • 13. Independent blood-brain barrier transport systems for nucleic acid precursors.
    Cornford EM; Oldendorf WH
    Biochim Biophys Acta; 1975 Jun; 394(2):211-9. PubMed ID: 1138930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MEMBRANE TRANSPORT OF PURINES AND PYRIMIDINES IN A CESTODE.
    MACINNIS AJ; FISHER FM; READ CP
    J Parasitol; 1965 Apr; 51():260-7. PubMed ID: 14275220
    [No Abstract]   [Full Text] [Related]  

  • 15. Purine and pyrimidine absorption by the gut of the chiton, Cryptochiton stelleri.
    Hanisch ME; Lawrence AL
    Comp Biochem Physiol A Comp Physiol; 1972 Jul; 42(3):601-10. PubMed ID: 4404259
    [No Abstract]   [Full Text] [Related]  

  • 16. The uptake and incorporation of purines by wild-type Saccharomyces cerevisiae and a mutant resistant to 4-aminopyrazolo (3,4-d) pyrimidine.
    Pickering WR; Woods RA
    Biochim Biophys Acta; 1972 Mar; 264(1):45-58. PubMed ID: 4336666
    [No Abstract]   [Full Text] [Related]  

  • 17. A specific adenosine phosphorylase, distinct from purine nucleoside phosphorylase.
    Senesi S; Falcone G; Mura U; Sgarrella F; Ipata PL
    FEBS Lett; 1976 May; 64(2):353-7. PubMed ID: 819302
    [No Abstract]   [Full Text] [Related]  

  • 18. The regulation of purine utilization in bacteria. II. Adenine phosphoribosyltransferase in isolated membrane preparations and its role in transport of adenine across the membrane.
    Hochstadt-Ozer J; Stadtman ER
    J Biol Chem; 1971 Sep; 246(17):5304-11. PubMed ID: 4328694
    [No Abstract]   [Full Text] [Related]  

  • 19. THE INFLUENCE OF HETEROATOMS AND SUBTITUENTS ON THE TAUTOMERIC EQUILIBRIA IN BIOCHEMICAL PURINES AND PYRIMIDINES. I. AZAPURINES AND AZAPYRIMIDINES.
    PULLMAN A
    Biochim Biophys Acta; 1964 Jul; 87():365-9. PubMed ID: 14211632
    [No Abstract]   [Full Text] [Related]  

  • 20. Comparative study of permanganate oxidation reactions of nucleotide bases by spectroscopy.
    Bui CT; Cotton RG
    Bioorg Chem; 2002 Apr; 30(2):133-7. PubMed ID: 12020137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.