These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 4366379)

  • 1. The role of the membrane in the utilization of nucleic acid precursors.
    Hochstadt J
    CRC Crit Rev Biochem; 1974 Mar; 2(2):259-310. PubMed ID: 4366379
    [No Abstract]   [Full Text] [Related]  

  • 2. The effects of bases and nucleosides on the intracellular contents of nucleotides and 5-phosphoribosyl 1-pyrophosphate in Escherichia coli.
    Bagnara AS; Finch LR
    Eur J Biochem; 1974 Feb; 41(3):421-30. PubMed ID: 4361644
    [No Abstract]   [Full Text] [Related]  

  • 3. The regulation of purine utilization in bacteria. III. The involvement of purine phosphoribosyltransferases in the uptake of adenine and other nucleic acid precursors by intact resting cells.
    Hochstadt-Ozer J; Stadtman ER
    J Biol Chem; 1971 Sep; 246(17):5312-20. PubMed ID: 4328695
    [No Abstract]   [Full Text] [Related]  

  • 4. The regulation of purine utilization in bacteria. IV. Roles of membrane-localized and pericytoplasmic enzymes in the mechanism of purine nucleoside transport across isolated Escherichia coli membranes.
    Hochstadt-Ozer J
    J Biol Chem; 1972 Apr; 247(8):2419-26. PubMed ID: 4336374
    [No Abstract]   [Full Text] [Related]  

  • 5. Degradation of nucleic acid derivatives by rumen bacteria in vitro.
    McAllan AB; Smith RH
    Br J Nutr; 1973 May; 29(3):467-74. PubMed ID: 4715154
    [No Abstract]   [Full Text] [Related]  

  • 6. Chinese hamster cells exhibiting a temperature dependent alteration in purine transport.
    Harris JF; Whitmore GF
    J Cell Physiol; 1974 Feb; 83(1):43-51. PubMed ID: 4855909
    [No Abstract]   [Full Text] [Related]  

  • 7. Specificity and control of uptake of purines and other compounds in Bacillus subtilis.
    Beaman TC; Hitchins AD; Ochi K; Vasantha N; Endo T; Freese E
    J Bacteriol; 1983 Dec; 156(3):1107-17. PubMed ID: 6417108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Requirements of Acholeplasma laidlawii A, strain LA 1, for nucleic acid precursors.
    Liska B; Smith PF
    Folia Microbiol (Praha); 1974; 19(2):107-17. PubMed ID: 4471597
    [No Abstract]   [Full Text] [Related]  

  • 9. Uptake and accumulation of purine bases by stationary yeast cells pretreated with glucose.
    Reichert U; Winter M
    Biochim Biophys Acta; 1974 Jul; 356(1):108-16. PubMed ID: 4366819
    [No Abstract]   [Full Text] [Related]  

  • 10. Purine and pyrimidine transport by cultured Novikoff cells. Specificities and mechanism of transport and relationship to phosphoribosylation.
    Zylka JM; Plagemann PG
    J Biol Chem; 1975 Aug; 250(15):5756-67. PubMed ID: 168203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic fate of pyrimidines and purines in dietary nucleic acids ingested by mice.
    Sonoda T; Tatibana M
    Biochim Biophys Acta; 1978 Nov; 521(1):55-66. PubMed ID: 718937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guanine phosphoribosyltransferase from Escherichia coli, specificity and properties.
    Miller RL; Ramsey GA; Krenitsky TA; Elion GB
    Biochemistry; 1972 Dec; 11(25):4723-31. PubMed ID: 4347700
    [No Abstract]   [Full Text] [Related]  

  • 13. Independent blood-brain barrier transport systems for nucleic acid precursors.
    Cornford EM; Oldendorf WH
    Biochim Biophys Acta; 1975 Jun; 394(2):211-9. PubMed ID: 1138930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MEMBRANE TRANSPORT OF PURINES AND PYRIMIDINES IN A CESTODE.
    MACINNIS AJ; FISHER FM; READ CP
    J Parasitol; 1965 Apr; 51():260-7. PubMed ID: 14275220
    [No Abstract]   [Full Text] [Related]  

  • 15. Purine and pyrimidine absorption by the gut of the chiton, Cryptochiton stelleri.
    Hanisch ME; Lawrence AL
    Comp Biochem Physiol A Comp Physiol; 1972 Jul; 42(3):601-10. PubMed ID: 4404259
    [No Abstract]   [Full Text] [Related]  

  • 16. The uptake and incorporation of purines by wild-type Saccharomyces cerevisiae and a mutant resistant to 4-aminopyrazolo (3,4-d) pyrimidine.
    Pickering WR; Woods RA
    Biochim Biophys Acta; 1972 Mar; 264(1):45-58. PubMed ID: 4336666
    [No Abstract]   [Full Text] [Related]  

  • 17. A specific adenosine phosphorylase, distinct from purine nucleoside phosphorylase.
    Senesi S; Falcone G; Mura U; Sgarrella F; Ipata PL
    FEBS Lett; 1976 May; 64(2):353-7. PubMed ID: 819302
    [No Abstract]   [Full Text] [Related]  

  • 18. The regulation of purine utilization in bacteria. II. Adenine phosphoribosyltransferase in isolated membrane preparations and its role in transport of adenine across the membrane.
    Hochstadt-Ozer J; Stadtman ER
    J Biol Chem; 1971 Sep; 246(17):5304-11. PubMed ID: 4328694
    [No Abstract]   [Full Text] [Related]  

  • 19. THE INFLUENCE OF HETEROATOMS AND SUBTITUENTS ON THE TAUTOMERIC EQUILIBRIA IN BIOCHEMICAL PURINES AND PYRIMIDINES. I. AZAPURINES AND AZAPYRIMIDINES.
    PULLMAN A
    Biochim Biophys Acta; 1964 Jul; 87():365-9. PubMed ID: 14211632
    [No Abstract]   [Full Text] [Related]  

  • 20. Comparative study of permanganate oxidation reactions of nucleotide bases by spectroscopy.
    Bui CT; Cotton RG
    Bioorg Chem; 2002 Apr; 30(2):133-7. PubMed ID: 12020137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.