BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 4366474)

  • 41. Stringent factor binds to Escherichia coli ribosomes only in the presence of protein L10.
    Howard GA; Gordon J
    FEBS Lett; 1976 Oct; 68(2):211-4. PubMed ID: 789113
    [No Abstract]   [Full Text] [Related]  

  • 42. Soluble factors required for eukaryotic protein synthesis.
    Weissbach H; Ochoa S
    Annu Rev Biochem; 1976; 45():191-216. PubMed ID: 786149
    [No Abstract]   [Full Text] [Related]  

  • 43. Identification by photoaffinity labeling of the proteins in E. coli ribosomes involved in elongation-factor G-dependent GDP binding.
    Maassen JA; Möller W
    Acta Biol Med Ger; 1974; 33(5-6):621-4. PubMed ID: 4619943
    [No Abstract]   [Full Text] [Related]  

  • 44. Complex formation of fusidic acid with G factor, ribosome and guanosine nucleotide.
    Okura A; Kinoshita T; Tanaka N
    Biochem Biophys Res Commun; 1970 Dec; 41(6):1545-50. PubMed ID: 4922635
    [No Abstract]   [Full Text] [Related]  

  • 45. Studies on translocation. IV. The hydrolysis of a single round of guanosine triphosphate in the presence of fusidic acid.
    Bodley JW; Zieve FJ; Lin L
    J Biol Chem; 1970 Nov; 245(21):5662-7. PubMed ID: 5472364
    [No Abstract]   [Full Text] [Related]  

  • 46. Studies on translocation. 3. Conditions necessary for the formation and detection of a stable ribosome-G factor-guanosine diphosphate complex in the presence of fusidic acid.
    Bodley JW; Zieve FJ; Lin L; Zieve ST
    J Biol Chem; 1970 Nov; 245(21):5656-61. PubMed ID: 4319564
    [No Abstract]   [Full Text] [Related]  

  • 47. Altered specificity of synthesis of guanosine tetraphosphate (ppGpp) and pentaphosphate (ppGpp) by salt-washed ribosomes.
    Ramagopal S
    Biochem Biophys Res Commun; 1974 May; 58(1):268-71. PubMed ID: 4598443
    [No Abstract]   [Full Text] [Related]  

  • 48. Requirement for GTP in the initiation process on reticulocyte ribosomes and ribosomal subunits.
    Shafritz DA; Laycock DG; Crystal RG; Anderson WF
    Proc Natl Acad Sci U S A; 1971 Sep; 68(9):2246-51. PubMed ID: 5289383
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Involvement of 50S ribosomal proteins L6 and L10 in the ribosome dependent GTPase activity of elongation factor G.
    Schrier PI; Maassen JA; Möller W
    Biochem Biophys Res Commun; 1973 Jul; 53(1):90-8. PubMed ID: 4582373
    [No Abstract]   [Full Text] [Related]  

  • 50. Effect of methanol on the partial reactions of polypeptide chain elongation.
    Hamel E; Nakamoto T
    Biochemistry; 1972 Oct; 11(21):3933-8. PubMed ID: 4562585
    [No Abstract]   [Full Text] [Related]  

  • 51. Selective chemical modification of Escherichia coli elongation factor G. N-Ethylmaleimide modification of a cysteine essential for nucleotide binding.
    Rohrbach MS; Bodley JW
    J Biol Chem; 1976 Feb; 251(4):930-3. PubMed ID: 765342
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ribosomes cannot interact simultaneously with elongation factors EF Tu and EF G.
    Richman N; Bodley JW
    Proc Natl Acad Sci U S A; 1972 Mar; 69(3):686-9. PubMed ID: 4551984
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Formation of aminoacyl-tRNA-guanulul-5'-methylene diphosphonate-elongation factor complex.
    Lee JC; Roach MC
    Biochem Biophys Res Commun; 1975 Apr; 63(4):864-9. PubMed ID: 1093548
    [No Abstract]   [Full Text] [Related]  

  • 54. Binding of aminoacyl-tRNA to ribosomes promoted by elongation factor Tu. Studies on the role of GTP hydrolysis.
    Yokosawa H; Kawakita M; Arai K; Inoue-Yokosawa N; Kaziro Y
    J Biochem; 1975 Apr; 77(4):719-28. PubMed ID: 1097432
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inability of E. coli ribosomes to interact simultaneously with the bacterial elongation factors EF Tu and EF G.
    Richter D
    Biochem Biophys Res Commun; 1972 Mar; 46(5):1850-6. PubMed ID: 4552461
    [No Abstract]   [Full Text] [Related]  

  • 56. Mechanism of inhibition of translocation by kanamycin and viomycin: a comparative study with fusidic acid.
    Misumi M; Tanaka N
    Biochem Biophys Res Commun; 1980 Jan; 92(2):647-54. PubMed ID: 6243944
    [No Abstract]   [Full Text] [Related]  

  • 57. Isolation and properties of a ribosome-bound factor required for ppGpp and ppGpp synthesis in Escherichia coli.
    Cochran JW; Byrne RW
    J Biol Chem; 1974 Jan; 249(2):353-60. PubMed ID: 4358548
    [No Abstract]   [Full Text] [Related]  

  • 58. MSI and MSII made on ribosome in idling step of protein synthesis.
    Haseltine WA; Block R; Gilbert W; Weber K
    Nature; 1972 Aug; 238(5364):381-4. PubMed ID: 4559580
    [No Abstract]   [Full Text] [Related]  

  • 59. Protein initiation in eukaryotes: formation and function of a ternary complex composed of a partially purified ribosomal factor, methionyl transfer RNA, and guanosine triphosphate.
    Levin DH; Kyner D; Acs G
    Proc Natl Acad Sci U S A; 1973 Jan; 70(1):41-5. PubMed ID: 4509663
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Stabilization by the 30S ribosomal subunit of the interaction of 50S subunits with elongation factor G and guanine nucleotide.
    Marsh RC; Parmeggiani A
    Biochemistry; 1977 Apr; 16(7):1278-83. PubMed ID: 321016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.