These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
65 related articles for article (PubMed ID: 4366962)
1. A proposed hydrogen transfer function for cytochrome c. Harrison JE Proc Natl Acad Sci U S A; 1974 Jun; 71(6):2332-4. PubMed ID: 4366962 [TBL] [Abstract][Full Text] [Related]
2. Hydrogenase activity in the dry state: isotope exchange and reversible oxidoreduction of cytochrome c3. Kimura K; Suzuki A; Inokuchi H; Yagi T Biochim Biophys Acta; 1979 Mar; 567(1):96-105. PubMed ID: 222328 [TBL] [Abstract][Full Text] [Related]
3. Electrochemical measurement of second-order electron transfer rate constants for the reaction between cytochrome b5 and cytochrome c. Seetharaman R; White SP; Rivera M Biochemistry; 1996 Sep; 35(38):12455-63. PubMed ID: 8823180 [TBL] [Abstract][Full Text] [Related]
4. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain. Murataliev MB; Klein M; Fulco A; Feyereisen R Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888 [TBL] [Abstract][Full Text] [Related]
5. A complete mechanism for steady-state oxidation of yeast cytochrome c by yeast cytochrome c peroxidase. Miller MA Biochemistry; 1996 Dec; 35(49):15791-9. PubMed ID: 8961942 [TBL] [Abstract][Full Text] [Related]
6. Conformation-dependent participation of the protein in electron equivalent transfer to cytochrome c. Shafferman A; Stein G Biochim Biophys Acta; 1977 Oct; 462(1):161-70. PubMed ID: 20947 [TBL] [Abstract][Full Text] [Related]
7. Interaction of cytochrome c with flavocytochrome b2. Daff S; Sharp RE; Short DM; Bell C; White P; Manson FD; Reid GA; Chapman SK Biochemistry; 1996 May; 35(20):6351-7. PubMed ID: 8639580 [TBL] [Abstract][Full Text] [Related]
8. Electrochemically driven catalysis of Rhizobium sp. NT-26 arsenite oxidase with its native electron acceptor cytochrome c552. Kalimuthu P; Heath MD; Santini JM; Kappler U; Bernhardt PV Biochim Biophys Acta; 2014 Jan; 1837(1):112-20. PubMed ID: 23891971 [TBL] [Abstract][Full Text] [Related]
9. Thermodynamic volume cycles for electron transfer in the cytochrome c oxidase and for the binding of cytochrome c to cytochrome c oxidase. Kornblatt JA; Kornblatt MJ; Rajotte I; Hoa GH; Kahn PC Biophys J; 1998 Jul; 75(1):435-44. PubMed ID: 9649404 [TBL] [Abstract][Full Text] [Related]
10. Photochemical electron injection into redox-active proteins. Brzezinski P; Wilson MT Proc Natl Acad Sci U S A; 1997 Jun; 94(12):6176-9. PubMed ID: 9177190 [TBL] [Abstract][Full Text] [Related]
11. Studies on electron transfer from methanol dehydrogenase to cytochrome cL, both purified from Hyphomicrobium X. Dijkstra M; Frank J; Duine JA Biochem J; 1989 Jan; 257(1):87-94. PubMed ID: 2537627 [TBL] [Abstract][Full Text] [Related]
12. Role of configurational gating in intracomplex electron transfer from cytochrome c to the radical cation in cytochrome c peroxidase. Mei H; Wang K; Peffer N; Weatherly G; Cohen DS; Miller M; Pielak G; Durham B; Millett F Biochemistry; 1999 May; 38(21):6846-54. PubMed ID: 10346906 [TBL] [Abstract][Full Text] [Related]
13. New insights into the catalytic cycle of flavocytochrome b2. Daff S; Ingledew WJ; Reid GA; Chapman SK Biochemistry; 1996 May; 35(20):6345-50. PubMed ID: 8639579 [TBL] [Abstract][Full Text] [Related]
14. [Electron transfer in hemoproteins. VIII. Influence of ionic strength on the rate of reduction of ferricytochrome c by oxymyoglobin derivatives, chemically modified at histidine residues]. Postnikova GB; Shliapnikova EA; Atanasov BP; Vol'kenshteĭn Mol Biol (Mosk); 1982; 16(1):104-16. PubMed ID: 6280031 [TBL] [Abstract][Full Text] [Related]
15. [Quantitative estimate of major factors determining the kinetics of electron transfer reactions with cytochrome c]. Fogel' VR; Likhtenshteĭn GI; Kotel'nikov AI Biofizika; 1985; 30(3):394-9. PubMed ID: 2992608 [TBL] [Abstract][Full Text] [Related]
16. Hydrogenase, electron-transfer proteins, and energy coupling in the sulfate-reducing bacteria Desulfovibrio. Odom JM; Peck HD Annu Rev Microbiol; 1984; 38():551-92. PubMed ID: 6093686 [No Abstract] [Full Text] [Related]
17. Determinants of electron transfer rates: the cytochrome c: cytochrome c peroxidase system. McLendon G; Rogalsky JS; Magner E; Conklin KT Prog Clin Biol Res; 1988; 274():387-400. PubMed ID: 2841674 [No Abstract] [Full Text] [Related]
18. Single catalytic site model for the oxidation of ferrocytochrome c by mitochondrial cytochrome c oxidase. Speck SH; Dye D; Margoliash E Proc Natl Acad Sci U S A; 1984 Jan; 81(2):347-51. PubMed ID: 6320180 [TBL] [Abstract][Full Text] [Related]
19. Diode or tunnel-diode characteristics? Resolving the catalytic consequences of proton coupled electron transfer in a multi-centered oxidoreductase. Gwyer JD; Richardson DJ; Butt JN J Am Chem Soc; 2005 Nov; 127(43):14964-5. PubMed ID: 16248601 [TBL] [Abstract][Full Text] [Related]
20. [Electron transfer to hemoproteins. II. pH-dependence of the reduction rate of ferricytochrome c by oxymyoglobin]. Atanosov BP; Postnikova GB; Sadykov IuKh; Vol'kenshteĭn MV Mol Biol (Mosk); 1977; 11(3):537-44. PubMed ID: 37434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]