These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 4367173)

  • 1. Formation of high-energy phosphate bonds effected by electron-deficient sulfides.
    Glass RS; Williams EB; Wilson GS
    Biochemistry; 1974 Jul; 13(14):2800-5. PubMed ID: 4367173
    [No Abstract]   [Full Text] [Related]  

  • 2. The oxidation of thioethers by bromine. A model system for oxidative phosphorylation.
    Lambeth DO; Lardy HA
    Biochemistry; 1969 Aug; 8(8):3395-402. PubMed ID: 4309206
    [No Abstract]   [Full Text] [Related]  

  • 3. Orthophosphate analysis by the Fiske-SubbaRow method and interference by adenosine phosphates and pyrophosphate at variable acid pH.
    Seddon B; Fynn GH
    Anal Biochem; 1973 Dec; 56(2):566-70. PubMed ID: 4358194
    [No Abstract]   [Full Text] [Related]  

  • 4. Formation of adenosine triphosphate in the oxidation of a model for the reduced pyridine nucleotides.
    Bechara EJ; Cilento G
    Biochemistry; 1972 Jul; 11(14):2606-10. PubMed ID: 4339876
    [No Abstract]   [Full Text] [Related]  

  • 5. THE PREPARATION OF ADENOSINE 5'-PYROPHOSPHATE BY A NON-ENZYMIC METHOD.
    DAWSON RM; FORD M; EICHBERG J
    Biochem J; 1965 Apr; 95(1):104-6. PubMed ID: 14333545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxyl free radical formation from hydrogen peroxide by ferrous iron-nucleotide complexes.
    Floyd RA; Lewis CA
    Biochemistry; 1983 May; 22(11):2645-9. PubMed ID: 6307343
    [No Abstract]   [Full Text] [Related]  

  • 7. [Structure of electrochemically reduced adenine nucleotides. Their interaction with inorganic phosphate].
    Makarov AD; Opanasenko VK; Lebedeva AI
    Biokhimiia; 1976 Sep; 41(9):1561-6. PubMed ID: 974170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pyruvate-phosphate dikinase reaction. The fate of phosphate and the equilibrium.
    Reeves RE; Menzies RA; Hsu DS
    J Biol Chem; 1968 Oct; 243(20):5486-91. PubMed ID: 4302788
    [No Abstract]   [Full Text] [Related]  

  • 9. Phosphorylation coupled to oxidation of thiol groups (GSH) by cytochrome c with disulfide (GSSG) as an essential catalyst. I. Demonstration of ADP formation from AMP and HPO4 2-.
    Painter AA; Hunter FE
    Biochem Biophys Res Commun; 1970 Jul; 40(2):360-8. PubMed ID: 4319825
    [No Abstract]   [Full Text] [Related]  

  • 10. POTENTIOMETRIC STUDIES OF THE SECONDARY PHOSPHATE IONIZATIONS OF AMP, ADP, AND ATP, AND CALCULATIONS OF THERMODYNAMIC DATA FOR THE HYDROLYSIS REACTIONS.
    PHILLIPS RC; GEORGE P; RUTMAN RJ
    Biochemistry; 1963; 2():501-8. PubMed ID: 14069537
    [No Abstract]   [Full Text] [Related]  

  • 11. Hydrolysis of ATP in chemical models.
    Tabushi I; Imuta J; Morioka K
    Nucleic Acids Symp Ser; 1981; (10):233-5. PubMed ID: 7312643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate binding and reaction intermediates of glutamine synthetase (Escherichia coli W) as studied by isotope exchanges.
    Wedler FC; Boyer PD
    J Biol Chem; 1972 Feb; 247(4):984-92. PubMed ID: 4400841
    [No Abstract]   [Full Text] [Related]  

  • 13. EFFECT OF ADENOSINE TRIPHOSPHATE AND MONOVALENT CATIONS ON BRAIN 5'-ADENYLIC ACID DEAMINASE.
    ASKARI A
    Nature; 1964 Apr; 202():185. PubMed ID: 14156297
    [No Abstract]   [Full Text] [Related]  

  • 14. Insoluble solid complexes of norepinephrine and adenosine triphosphate.
    Maynert EW; Moon BH; Pai VS
    Mol Pharmacol; 1972 Jan; 8(1):88-94. PubMed ID: 5061520
    [No Abstract]   [Full Text] [Related]  

  • 15. Electrochromatographic separation of inorganic phosphate, adenosine monophosphate, adenosine diphosphate, and adenosine triphosphate.
    SATO TR; THOMSON JF; DANFORTH WF
    Anal Biochem; 1963 Jun; 5():542-7. PubMed ID: 13986747
    [No Abstract]   [Full Text] [Related]  

  • 16. On the coupling between the transport of phosphate and adenine nucleotides in rat liver mitochondria.
    McGivan JD; Grebe K; Klingenberg M
    Biochem Biophys Res Commun; 1971 Dec; 45(6):1533-41. PubMed ID: 5128194
    [No Abstract]   [Full Text] [Related]  

  • 17. Energy and electron orbitals in adenosine phosphates.
    Alving RE; Laki K
    J Theor Biol; 1972 Feb; 34(2):199-214. PubMed ID: 4335657
    [No Abstract]   [Full Text] [Related]  

  • 18. Patterns of oxygen interchange between water, substrates, and phosphate compounds of Escherichia coli and Bacillus subtilis.
    Chaney SG; Duffy JJ; Boyer PD
    J Biol Chem; 1972 Apr; 247(7):2145-50. PubMed ID: 4622742
    [No Abstract]   [Full Text] [Related]  

  • 19. ADENOSINE TRIPHOSPHATE CLEAVAGE DURING THE G-ACTIN TO F-ACTIN TRANSFORMATION AND THE BINDING OF ADENOSINE DIPHOSPHATE TO F-ACTIN.
    BARANY M; KOSHLAND DE; SPRINGHORN SS; FINKELMAN F; THERATTIL ANTONY T
    J Biol Chem; 1964 Jun; 239():1917-9. PubMed ID: 14213377
    [No Abstract]   [Full Text] [Related]  

  • 20. Allosteric properties of muscle phosphofructokinase. I. Binding of magnesium adenosine triphosphate to the inhibitory site.
    Kemp RG
    Biochemistry; 1969 Aug; 8(8):3162-8. PubMed ID: 4241302
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.