BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 4367983)

  • 1. Electron paramagnetic resonance studies on the copper(II) substituted alkaline phosphatase from Escherichia coli.
    Csopak H; Falk KE
    Biochim Biophys Acta; 1974 Jul; 359(1):22-32. PubMed ID: 4367983
    [No Abstract]   [Full Text] [Related]  

  • 2. Hydrogen-tritium exchange of partially and fully reconstituted zinc and cobalt alkaline phosphatase of Escherichia coli.
    Brown EM; Ulmer DD; Vallee BL
    Biochemistry; 1974 Dec; 13(26):5328-34. PubMed ID: 4611482
    [No Abstract]   [Full Text] [Related]  

  • 3. Escherichia coli Co(II) alkaline phosphatase. Absorption, circular dichroism, and magnetic circular dichroism of the d-d electronic transitions.
    Taylor JS; Lau CY; Applebury ML; Coleman JE
    J Biol Chem; 1973 Sep; 248(17):6216-20. PubMed ID: 4580054
    [No Abstract]   [Full Text] [Related]  

  • 4. Factors affecting the zinc content of E. coli alkaline phosphatase.
    Csopak H; Szajn H
    Arch Biochem Biophys; 1973 Aug; 157(2):374-9. PubMed ID: 4199855
    [No Abstract]   [Full Text] [Related]  

  • 5. 35Cl nuclear magnetic resonance study of zinc and phosphate binding of E. coli alkaline phosphatase.
    Norne JE; Csopak H; Lindman B
    Arch Biochem Biophys; 1974 Jun; 162(2):552-9. PubMed ID: 4209891
    [No Abstract]   [Full Text] [Related]  

  • 6. A proton relaxation rate study of the copper analog of Escherichia coli alkaline phosphatase.
    Zukin RS; Hollis DP
    J Biol Chem; 1974 Jan; 249(2):656-8. PubMed ID: 4358560
    [No Abstract]   [Full Text] [Related]  

  • 7. The specific binding of zinc(II) to alkaline phosphatase of Escherichia coli.
    Csopak H
    Eur J Biochem; 1969 Jan; 7(2):186-92. PubMed ID: 4885464
    [No Abstract]   [Full Text] [Related]  

  • 8. Effect of EDTA on Escherichia coli alkaline phosphatase.
    Csopak H; Falk KE; Szajn H
    Biochim Biophys Acta; 1972 Feb; 258(2):466-72. PubMed ID: 4334532
    [No Abstract]   [Full Text] [Related]  

  • 9. Negative cooperativity and half of the sites reactivity. Alkaline phosphatases of Escherichia coli with Zn2+, Co2+, Cd2+, Mn2+, and Cu2+ in the active sites.
    Chappelet-Tordo D; Iwatsubo M; Lazdunski M
    Biochemistry; 1974 Aug; 13(18):3754-62. PubMed ID: 4604809
    [No Abstract]   [Full Text] [Related]  

  • 10. Role of metal ions in Escherichia coli alkaline phosphatase. A study of the metal-water interaction by nuclear relaxation rate measurements on water protons.
    Zukin RS; Hollis DP
    J Biol Chem; 1975 Feb; 250(3):835-42. PubMed ID: 163241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acid phosphomonoesterase of human prostate. Phosphate transfer reactions and comparison with alkaline phosphatase.
    Ostrowski W; Barnard EA
    Biochim Biophys Acta; 1971 Oct; 250(1):131-42. PubMed ID: 4334853
    [No Abstract]   [Full Text] [Related]  

  • 12. Kinetics of substrate hydrolysis by molecular variants of Escherichia coli alkaline phosphatase.
    Bloch W; Schlesinger MJ
    J Biol Chem; 1974 Mar; 249(6):1760-8. PubMed ID: 4594238
    [No Abstract]   [Full Text] [Related]  

  • 13. Purification and characterization of a phosphatase specifically hydrolyzing p-nitrophenyl phosphate from an oral strain of Streptococcus mutans.
    Knuuttila ML; Mäkinen KK
    Arch Biochem Biophys; 1972 Oct; 152(2):685-701. PubMed ID: 4344130
    [No Abstract]   [Full Text] [Related]  

  • 14. Two copper-containing proteins from cucumber (Cucumis sativus).
    Markossian KA; Aikazyan VT; Nalbandyan RM
    Biochim Biophys Acta; 1974 Jul; 359(1):47-54. PubMed ID: 4367984
    [No Abstract]   [Full Text] [Related]  

  • 15. [Purification and properties of alkaline phosphatase from beef brain].
    Brunel C; Cathala G; Saintot M
    Biochim Biophys Acta; 1969; 191(3):621-35. PubMed ID: 4984115
    [No Abstract]   [Full Text] [Related]  

  • 16. Zinc and magnesium content of alkaline phosphatase from Escherichia coli.
    Bosron WF; Kennedy FS; Vallee BL
    Biochemistry; 1975 May; 14(10):2275-82. PubMed ID: 238559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrolysis of S-substituted monoesters of phosphorothioic acid by alkaline phosphatase from Escherichia coli.
    Neumann H; Boross L; Katchalski E
    J Biol Chem; 1967 Jul; 242(13):3142-7. PubMed ID: 5338923
    [No Abstract]   [Full Text] [Related]  

  • 18. Properties of the apoprotein and role of copper and zinc in protein conformation and enzyme activity of bovine superoxide dismutase.
    Rotilio G; Calabrese L; Bossa F; Barra D; Agrò AF; Mondovì B
    Biochemistry; 1972 May; 11(11):2182-7. PubMed ID: 4337490
    [No Abstract]   [Full Text] [Related]  

  • 19. The functional properties of the Zn2(plus)-and Co2(plus)-alkaline phosphatases of Escherichia coli. Labelling of the active site with pyrophosphate, complex formation with arsenate, and reinvestigation of the role of the zinc atoms.
    Petitclerc C; Lazdunski C; Chappelet D; Moulin A; Lazdunski M
    Eur J Biochem; 1970 Jun; 14(2):301-8. PubMed ID: 4319099
    [No Abstract]   [Full Text] [Related]  

  • 20. Zinc and cobalt alkaline phosphatases.
    Simpson RT; Vallee BL
    Ann N Y Acad Sci; 1969 Oct; 166(2):670-95. PubMed ID: 4907876
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.