These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 436831)
41. Characterization of the NAD+ binding site of Candida boidinii formate dehydrogenase by affinity labelling and site-directed mutagenesis. Labrou NE; Rigden DJ; Clonis YD Eur J Biochem; 2000 Nov; 267(22):6657-64. PubMed ID: 11054119 [TBL] [Abstract][Full Text] [Related]
42. Affinity labeling of glyceraldehyde-3-phosphate dehydrogenase from sturgeon and Bacillus stearothermophilus by 3-chloroacetylpyridine--adenine dinucleotide. Kinetic studies. Branlant G; Eiler B; Wallen L; Biellmann JF Eur J Biochem; 1982 Oct; 127(3):519-24. PubMed ID: 7173194 [TBL] [Abstract][Full Text] [Related]
43. [Modification of glyceraldehyde-3-phosphate dehydrogenase from rabbit skeletal muscle by [3-(3-bromoacetylpyridinio)-propyl]-adenosine pyrophosphate (author's transl)]. Dietz G; Woenckhaus C; Jaenicke R; Schuster I Z Naturforsch C Biosci; 1977; 32(1-2):85-92. PubMed ID: 192006 [TBL] [Abstract][Full Text] [Related]
44. Structure and function of L-lactate dehydrogenases from thermophilic and mesophilic bacteria. III) The primary structure of thermophilic lactate dehydrogenase from Bacillus stearothermophilus. Hydroxylamine-, o-iodosobenzoic acid- and tryptic-fragments. The complete amino-acid sequence. Wirz B; Suter F; Zuber H Hoppe Seylers Z Physiol Chem; 1983 Jul; 364(7):893-909. PubMed ID: 6352452 [TBL] [Abstract][Full Text] [Related]
45. A single amino acid substitution in lactate dehydrogenase improves the catalytic efficiency with an alternative coenzyme. Feeney R; Clarke AR; Holbrook JJ Biochem Biophys Res Commun; 1990 Jan; 166(2):667-72. PubMed ID: 2302233 [TBL] [Abstract][Full Text] [Related]
46. Primary structure of triosephosphate isomerase from Bacillus stearothermophilus. Artavanis-Tsakonas S; Harris JI Eur J Biochem; 1980 Jul; 108(2):599-611. PubMed ID: 6105959 [TBL] [Abstract][Full Text] [Related]
47. Role of the conserved glycyl residues located at the active site of leucine dehydrogenase from Bacillus stearothermophilus. Sekimoto T; Fukui T; Tanizawa K J Biochem; 1994 Jul; 116(1):176-82. PubMed ID: 7798175 [TBL] [Abstract][Full Text] [Related]
48. Activation of Sulfolobus solfataricus alcohol dehydrogenase by modification of cysteine residue 38 with iodoacetic acid. Raia CA; Caruso C; Marino M; Vespa N; Rossi M Biochemistry; 1996 Jan; 35(2):638-47. PubMed ID: 8555238 [TBL] [Abstract][Full Text] [Related]
49. Cloning and sequencing of the gene coding for alcohol dehydrogenase of Bacillus stearothermophilus and rational shift of the optimum pH. Sakoda H; Imanaka T J Bacteriol; 1992 Feb; 174(4):1397-402. PubMed ID: 1735726 [TBL] [Abstract][Full Text] [Related]
50. Leucine dehydrogenase from Bacillus stearothermophilus: identification of active-site lysine by modification with pyridoxal phosphate. Matsuyama T; Soda K; Fukui T; Tanizawa K J Biochem; 1992 Aug; 112(2):258-65. PubMed ID: 1400267 [TBL] [Abstract][Full Text] [Related]
51. Identification of a lysine residue at a nucleotide binding site in the firefly luciferase with p-fluorosulfonyl[14C]benzoyl-5'-adenosine. Lee Y; Esch FS; DeLuca MA Biochemistry; 1981 Mar; 20(5):1253-6. PubMed ID: 6784750 [TBL] [Abstract][Full Text] [Related]
52. Identification of cysteine-319 as the target amino acid of 8-[(4-bromo-2,3-dioxobutyl)thio]adenosine 5'-triphosphate in bovine liver glutamate dehydrogenase. Ozturk DH; Colman RF Biochemistry; 1991 Jul; 30(29):7126-34. PubMed ID: 1854724 [TBL] [Abstract][Full Text] [Related]
53. Inactivation of horse liver alcohol dehydrogenase by modification of cysteine residue 174 with diazonium-1H-tetrazole. Sogin DC; Plapp BV Biochemistry; 1976 Mar; 15(5):1087-93. PubMed ID: 1252428 [TBL] [Abstract][Full Text] [Related]
54. Active site specific cadmium(II)-substituted horse liver alcohol dehydrogenase: crystal structures of the free enzyme, its binary complex with NADH, and the ternary complex with NADH and bound p-bromobenzyl alcohol. Schneider G; Cedergren-Zeppezauer E; Knight S; Eklund H; Zeppezauer M Biochemistry; 1985 Dec; 24(25):7503-10. PubMed ID: 2935190 [TBL] [Abstract][Full Text] [Related]
55. Isolation of the glutamyl peptide labeled by the nucleotide analogue 2-(4-bromo-2,3-dioxobutylthio)-1,N(6)-ethenoadenosine 2',5'-biphosphate in the active site of NADP+-specific isocitrate dehydrogenase. Bailey JM; Colman RF J Biol Chem; 1987 Sep; 262(26):12620-6. PubMed ID: 2887570 [TBL] [Abstract][Full Text] [Related]
56. Dimers generated from tetrameric phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus are inactive but exhibit cooperativity in NAD binding. Roitel O; Sergienko E; Branlant G Biochemistry; 1999 Dec; 38(49):16084-91. PubMed ID: 10587431 [TBL] [Abstract][Full Text] [Related]
57. Amino acid sequence around a reactive cysteine of yeast alcohol dehydrogenase. Balestrieri C; Colonna G; Irace G Biochem Biophys Res Commun; 1975 Oct; 66(3):900-6. PubMed ID: 1101896 [No Abstract] [Full Text] [Related]
58. Cysteinyl-tRNA synthetase from Bacillus stearothermophilus. A structural and functional monomer. Bruton CJ; Cox LA Eur J Biochem; 1979 Oct; 100(1):301-8. PubMed ID: 488099 [TBL] [Abstract][Full Text] [Related]
59. Effect of modification of SH-groups in D-glyceraldehyde-3-phosphate dehydrogenase on the properties of enzyme--coenzyme complex. Vas M; Bartha F Acta Biochim Biophys Acad Sci Hung; 1976; 11(2-3):95-104. PubMed ID: 188295 [TBL] [Abstract][Full Text] [Related]
60. Effects of NAD+ binding on the luminescence of tryptophans 84 and 310 of glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus. Gabellieri E; Rahuel-Clermont S; Branlant G; Strambini GB Biochemistry; 1996 Sep; 35(38):12549-59. PubMed ID: 8823192 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]