These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 4368480)

  • 1. Cellular action of antidiuretic hormone in mice with inherited vasopressin-resistant urinary concentrating defects.
    Dousa TP; Valtin H
    J Clin Invest; 1974 Sep; 54(3):753-62. PubMed ID: 4368480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular action of vasopressin in medullary tubules of mice with hereditary nephrogenic diabetes insipidus.
    Jackson BA; Edwards RM; Valtin H; Dousa TP
    J Clin Invest; 1980 Jul; 66(1):110-22. PubMed ID: 6249843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renal medullary adenylate cyclase in rats with hypothalamic diabetes insipidus.
    Dousa TP; Hui YF; Barnes LD
    Endocrinology; 1975 Oct; 97(4):802-7. PubMed ID: 172317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular action of antidiuretic hormone in nephrogenic diabetes insipidus.
    Dousa TP
    Mayo Clin Proc; 1974 Mar; 49(3):188-99. PubMed ID: 4360694
    [No Abstract]   [Full Text] [Related]  

  • 5. Functional profile of the isolated uremic nephron. Impaired water permeability and adenylate cyclase responsiveness of the cortical collecting tubule to vasopressin.
    Fine LG; Schlondorff D; Trizna W; Gilbert RM; Bricker NS
    J Clin Invest; 1978 Jun; 61(6):1519-27. PubMed ID: 207738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo effect of indomethacin to potentiate the renal medullary cyclic AMP response to vasopressin.
    Lum GM; Aisenbrey GA; Dunn MJ; Berl T; Schrier RW; McDonald KM
    J Clin Invest; 1977 Jan; 59(1):8-13. PubMed ID: 187624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subcellular distribution of the enzymes related to the cellular action of vasopressin in renal medulla.
    Barnes LD; Hui YS; Frohnert PP; Dousa TP
    Endocrinology; 1975 Jan; 96(1):119-28. PubMed ID: 162875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanism of urinary concentration in nephrogenic diabetes insipidus.
    McConnell RF; Lorentz WB; Berger M; Smith EH; Carvajal HF; Travis LB
    Pediatr Res; 1977 Jan; 11(1 Pt 1):33-6. PubMed ID: 188007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Vasopressin: the ontogeny of antidiuretic action at the cellular level].
    Ivanova LN; Zelenina MN; Melidi NN; Solenov EI; Khegaĭ II
    Fiziol Zh SSSR Im I M Sechenova; 1989 Jul; 75(7):970-9. PubMed ID: 2530119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Causes of the urinary concentrating defect in mice with nephrogenic diabetes insipidus.
    Valtin H; Coffey AK; O'Sullivan DJ; Homma S; Dousa TP
    Physiol Bohemoslov; 1990; 39(1):103-11. PubMed ID: 2165265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlorpropamide action on renal concentrating mechanism in rats with hypothalamic diabetes insipidus.
    Kusano E; Braun-Werness JL; Vick DJ; Keller MJ; Dousa TP
    J Clin Invest; 1983 Oct; 72(4):1298-313. PubMed ID: 6313759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of colchicine and vinblastine on the cellular action of vasopressin in mammalian kidney. A possible role of microtubules.
    Dousa TP; Barnes LD
    J Clin Invest; 1974 Aug; 54(2):252-62. PubMed ID: 4367887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The clinical physiology of water metabolism. Part II: Renal mechanisms for urinary concentration; diabetes insipidus.
    Weitzman RE; Kleeman CR
    West J Med; 1979 Dec; 131(6):486-515. PubMed ID: 545867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of osmolality and oxygen availability on soluble cyclic AMP-dependent protein kinase activity of rat renal inner medulla.
    DeRubertis FR; Craven PA
    J Clin Invest; 1978 Dec; 62(6):1210-21. PubMed ID: 219025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Augmentation by chlorpropamide of 1-deamino-8-D-arginine vasopressin-induced antidiuresis and stimulation of renal medullary adenylate cyclase and accumulation of adenosine 3',5'-monophosphate.
    Moses AM; Coulson R
    Endocrinology; 1980 Mar; 106(3):967-72. PubMed ID: 6243558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathophysiology of renal concentrating defects.
    Quintanilla AP
    Ann Clin Lab Sci; 1981; 11(4):300-7. PubMed ID: 6791572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of lithium with vasopressin-sensitive cyclic AMP system of human renal medulla.
    Dousa TP
    Endocrinology; 1974 Nov; 95(5):1359-66. PubMed ID: 4372038
    [No Abstract]   [Full Text] [Related]  

  • 18. Antidiuretic and urinary cyclic AMP response of vasopressin in normal rats and in rats with lithium-polyuria.
    Christensen S; Geisler A
    Acta Pharmacol Toxicol (Copenh); 1977 Mar; 40(3):447-54. PubMed ID: 190861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathogenesis of nephrogenic diabetes insipidus due to chronic administration of lithium in rats.
    Christensen S; Kusano E; Yusufi AN; Murayama N; Dousa TP
    J Clin Invest; 1985 Jun; 75(6):1869-79. PubMed ID: 2989335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathogenic role of cyclic AMP in the impairment of urinary concentrating ability in acute hypercalcemia.
    Beck N; Singh H; Reed SW; Murdaugh HV; Davis BB
    J Clin Invest; 1974 Nov; 54(5):1049-55. PubMed ID: 4371361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.