BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 4368487)

  • 1. Characterization of lactose-fermenting revertants from lactose-negative Streptococcus lactis C2 mutants.
    Cords BR; McKay LL
    J Bacteriol; 1974 Sep; 119(3):830-9. PubMed ID: 4368487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of lactose utilization by lactic acid streptococci: enzymatic and genetic analyses.
    McKay L; Miller A; Sandine WE; Elliker PR
    J Bacteriol; 1970 Jun; 102(3):804-9. PubMed ID: 5429725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct galactose phosphoenolpyruvate-dependent phosphotransferase system in Streptococcus lactis.
    Park YH; McKay LL
    J Bacteriol; 1982 Feb; 149(2):420-5. PubMed ID: 6799488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the lactose plasmid on the metabolism of galactose by Streptococcus lactis.
    LeBlanc DJ; Crow VL; Lee LN; Garon CF
    J Bacteriol; 1979 Feb; 137(2):878-84. PubMed ID: 106044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmid linkage of the D-tagatose 6-phosphate pathway in Streptococcus lactis: effect on lactose and galactose metabolism.
    Crow VL; Davey GP; Pearce LE; Thomas TD
    J Bacteriol; 1983 Jan; 153(1):76-83. PubMed ID: 6294064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of lac+ transductants of Streptococcus lactis.
    Molskness TA; Sandine WE; Brown LR
    Appl Microbiol; 1974 Nov; 28(5):753-8. PubMed ID: 4216286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmids, loss of lactose metabolism, and appearance of partial and full lactose-fermenting revertants in Streptococcus cremoris B1.
    Anderson DG; McKay LL
    J Bacteriol; 1977 Jan; 129(1):367-77. PubMed ID: 830644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of phosphoenolpyruvate in lactose utilization by group N streptococci.
    McKay LL; Walter LA; Sandine WE; Elliker PR
    J Bacteriol; 1969 Aug; 99(2):603-10. PubMed ID: 5808082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional regulation and evolution of lactose genes in the galactose-lactose operon of Lactococcus lactis NCDO2054.
    Vaughan EE; Pridmore RD; Mollet B
    J Bacteriol; 1998 Sep; 180(18):4893-902. PubMed ID: 9733693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BETA-GALACTOSIDASE OF STREPTOCOCCUS LACTIS.
    CITTI JE; SANDINE WE; ELLIKER PR
    J Bacteriol; 1965 Apr; 89(4):937-42. PubMed ID: 14276118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of phosphoenolpyruvate in the catabolism of caries-conducive disaccharides by Streptococcus mutans: lactose transport.
    Calmes R
    Infect Immun; 1978 Mar; 19(3):934-42. PubMed ID: 246429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of lactose-phosphoenolpyruvate-dependent phosphotransferase system and beta-D-phosphogalactoside galactohydrolase activities in Lactobacillus casei.
    Chassy BM; Thompson J
    J Bacteriol; 1983 Jun; 154(3):1195-203. PubMed ID: 6406426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of methyl-beta-d-thiogalactopyranoside-6-phosphate accumulation in Streptococcus lactis by exclusion and expulsion mechanisms.
    Thompson J; Saier MH
    J Bacteriol; 1981 Jun; 146(3):885-94. PubMed ID: 6787017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous loss of proteinase- and lactose-utilizing enzyme activities in Streptococcus lactis and reversal of loss by transduction.
    McKay LL; Baldwin KA
    Appl Microbiol; 1974 Sep; 28(3):342-6. PubMed ID: 4214075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactose metabolism in Streptococcus lactis: phosphorylation of galactose and glucose moieties in vivo.
    Thompson J
    J Bacteriol; 1979 Dec; 140(3):774-85. PubMed ID: 118155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterofermentative carbohydrate metabolism of lactose-impaired mutants of Streptococcus lactis.
    Demko GM; Blanton SJ; Benoit RE
    J Bacteriol; 1972 Dec; 112(3):1335-45. PubMed ID: 4629656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on beta-galactoside transport in a Proteus mirabilis merodiploid carrying an Escherichia coli lactose operon.
    Stubbs J; Horwitz A; Moses V
    J Bacteriol; 1973 Oct; 116(1):131-40. PubMed ID: 4583204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catabolite inhibition and sequential metabolism of sugars by Streptococcus lactis.
    Thompson J; Turner KW; Thomas TD
    J Bacteriol; 1978 Mar; 133(3):1163-74. PubMed ID: 417061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus.
    Solem C; Koebmann B; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):35-40. PubMed ID: 17822381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactose metabolism in Streptococcus lactis: studies with a mutant lacking glucokinase and mannose-phosphotransferase activities.
    Thompson J; Chassy BM; Egan W
    J Bacteriol; 1985 Apr; 162(1):217-23. PubMed ID: 3920203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.