These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 4368511)

  • 41. Spin label motion in fatty acids.
    Mehlhorn R; Snipes W; Keith A
    Biophys J; 1973 Nov; 13(11):1223-31. PubMed ID: 4356775
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effects of n-alkanols on the lipid/protein interface of Ca(2+)-ATPase of sarcoplasmic reticulum vesicles.
    Lopes CM; Louro SR
    Biochim Biophys Acta; 1991 Dec; 1070(2):467-73. PubMed ID: 1662539
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Temperature dependence of rotational dynamics of protein and lipid in sarcoplasmic reticulum membranes.
    Bigelow DJ; Squier TC; Thomas DD
    Biochemistry; 1986 Jan; 25(1):194-202. PubMed ID: 3006752
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Proton nuclear magnetic resonance studies of sarcoplasmic reticulum membranes. Correlation of the temperature-dependent Ca 2+ efflux with a reversible structural transition.
    Davis DG; Inesi G
    Biochim Biophys Acta; 1971 Jul; 241(1):1-8. PubMed ID: 4256591
    [No Abstract]   [Full Text] [Related]  

  • 45. Spin label study of the sulfhydryl groups of sarcoplasmic reticulum.
    Yu BP; Masoro EJ; Downs J; Wharton D
    J Biol Chem; 1977 Aug; 252(15):5262-6. PubMed ID: 195944
    [No Abstract]   [Full Text] [Related]  

  • 46. A summary and evaluation of spin labels used as probes for biological membrane structure.
    Keith AD; Sharnoff M; Cohn GE
    Biochim Biophys Acta; 1973 Dec; 300(4):379-419. PubMed ID: 4360421
    [No Abstract]   [Full Text] [Related]  

  • 47. A spin-label study of the viscosity profile of sarcoplasmic reticular vesicles.
    Morse PD; Ruhlig M; Snipes W; Keith AD
    Arch Biochem Biophys; 1975 May; 168(1):40-56. PubMed ID: 166616
    [No Abstract]   [Full Text] [Related]  

  • 48. Phase transitions in lipids.
    Träuble H
    Biomembranes; 1972; 3():197-227. PubMed ID: 4353911
    [No Abstract]   [Full Text] [Related]  

  • 49. The molecular reorganization of lipid bilayers by osmium tetroxide. A spin-label study of orientation and restricted y-axis anisotropic motion in model membrane systems.
    Jost PC; Griffith OH
    Arch Biochem Biophys; 1973 Nov; 159(1):70-81. PubMed ID: 4361556
    [No Abstract]   [Full Text] [Related]  

  • 50. Phosphorus and proton nuclear magnetic resonance studies in sarcoplasmic reticulum membranes and lipids. A comparison of phosphate and proton group mobilities in membranes and lipid bilayers.
    Davis DG; Inesi G
    Biochim Biophys Acta; 1972 Sep; 282(1):180-6. PubMed ID: 4627086
    [No Abstract]   [Full Text] [Related]  

  • 51. Active transport of calcium ion in sarcoplasmic membranes.
    Inesi G
    Annu Rev Biophys Bioeng; 1972; 1():191-210. PubMed ID: 4346304
    [No Abstract]   [Full Text] [Related]  

  • 52. Molecular motion and order in oriented lipid multibilayer membranes evaluated by simulations of spin label ESR spectra. Effects of temperature, cholesterol and magnetic field.
    Shimoyama Y; Eriksson LE; Ehrenberg A
    Biochim Biophys Acta; 1978 Apr; 508(2):213-35. PubMed ID: 205243
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Membrane matrix disruption by melittin.
    Williams JC; Bell RM
    Biochim Biophys Acta; 1972 Nov; 288(2):255-62. PubMed ID: 4343282
    [No Abstract]   [Full Text] [Related]  

  • 54. Reaction mechanism of the Ca 2+ -dependent ATPase of sarcoplasmic reticulum from skeletal muscle. VI. Co-operative transition of ATPase activity during the initial phase.
    Yamada S; Yamamoto T; Kanazawa T; Tonomura Y
    J Biochem; 1971 Aug; 70(2):279-91. PubMed ID: 4255300
    [No Abstract]   [Full Text] [Related]  

  • 55. A saturation transfer electron spin resonance study on the break in the Arrhenius plot for the rotational motion of Ca2+-dependent adenosine triphosphatase molecules in purified and lipid-replaced preparations of rabbit skeletal muscle sarcoplasmic reticulum.
    Kaizu T; Kirino Y; Shimizu H
    J Biochem; 1980 Dec; 88(6):1837-43. PubMed ID: 6257672
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interactions of proteins and cholesterol with lipids in bilayer membranes.
    Kleemann W; McConnell HM
    Biochim Biophys Acta; 1976 Jan; 419(2):206-22. PubMed ID: 174727
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Role of magnesium ions in formation of the phosphoderivative of sarcoplasmic reticulum Ca2+-dependent ATPase].
    Maksina AG; Azizova OA; Artemova LG; Ritov VB; Vladimirov IuA
    Dokl Akad Nauk SSSR; 1978; 239(2):467-70. PubMed ID: 206418
    [No Abstract]   [Full Text] [Related]  

  • 58. Carriers and specificity in membranes. 3. Carrier-facilitated transport. Molecular motion in phospholipid bilayers and biomembranes.
    Hubbell WL
    Neurosci Res Program Bull; 1971 Jun; 9(3):357-61. PubMed ID: 4367591
    [No Abstract]   [Full Text] [Related]  

  • 59. Electron paramagnetic resonance reveals a large-scale conformational change in the cytoplasmic domain of phospholamban upon binding to the sarcoplasmic reticulum Ca-ATPase.
    Kirby TL; Karim CB; Thomas DD
    Biochemistry; 2004 May; 43(19):5842-52. PubMed ID: 15134458
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multilayer planar membranes of sarcoplasmic reticulum.
    Setaka M; Yano M; Kwan T; Shimizu H
    J Biochem; 1979 Nov; 86(5):1619-22. PubMed ID: 230188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.