These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 436856)

  • 1. The development of skeletal muscles in premature infants. I. Fibre size and histochemical differentiation.
    Schloon H; Schlottmann J; Lenard HG; Goebel HH
    Eur J Pediatr; 1979 Apr; 131(1):49-60. PubMed ID: 436856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentiation of fibres in human masseter, temporal and biceps brachii muscles. A histochemical study.
    Ringqvist M; Ringqvist I; Thornell LE
    J Neurol Sci; 1977 Jun; 32(2):265-73. PubMed ID: 141493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme histochemistry on skeletal muscle of the human foetus.
    Colling-Saltin AS
    J Neurol Sci; 1978 Dec; 39(2-3):169-85. PubMed ID: 153951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of human fetal muscles: a comparative histochemical analysis of the psoas and the quadriceps muscles.
    Kumagai T; Hakamada S; Hara K; Takeuchi T; Miyazaki S; Watanabe K; Komatsu K
    Neuropediatrics; 1984 Oct; 15(4):198-202. PubMed ID: 6238238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fibre sizes and histochemical staining characteristics in normal and chronically stimulated fast muscle of cat.
    Donselaar Y; Eerbeek O; Kernell D; Verhey BA
    J Physiol; 1987 Jan; 382():237-54. PubMed ID: 2957493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An immunocytochemical study of type I muscle fibres in developing human skeletal muscles.
    Zhang Y; Sher JH; Leung B; Shafiq SA
    J Neurol Sci; 1987 Aug; 80(1):1-12. PubMed ID: 2440999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of human oro-facial and masticatory muscles with respect to fibre types, myosins and capillaries. Morphological, enzyme-histochemical, immuno-histochemical and biochemical investigations.
    Stål P
    Swed Dent J Suppl; 1994; 98():1-55. PubMed ID: 7801228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postnatal differentiation and growth of skeletal muscle fibres in normal and undernourished rats. A histochemical and morphometric study.
    Haltia M; Berlin O; Schucht H; Sourander P
    J Neurol Sci; 1978 Mar; 36(1):25-39. PubMed ID: 148495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variability of muscle fibre composition and fibre size in the horse gluteus medius: an enzyme-histochemical and morphometric study.
    López-Rivero JL; Serrano AL; Diz AM; Galisteo AM
    J Anat; 1992 Aug; 181 ( Pt 1)(Pt 1):1-10. PubMed ID: 1284127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle development in large and small pig fetuses.
    Wigmore PM; Stickland NC
    J Anat; 1983 Sep; 137 (Pt 2)(Pt 2):235-45. PubMed ID: 6630038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibre types in chicken skeletal muscles and their changes in muscular dystrophy.
    Barnard EA; Lyles JM; Pizzey JA
    J Physiol; 1982 Oct; 331():333-54. PubMed ID: 7153905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphometric analysis of normal skeletal muscles in infancy, childhood and adolescence. An autopsy study.
    Oertel G
    J Neurol Sci; 1988 Dec; 88(1-3):303-13. PubMed ID: 3225628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Normal values for the soleus H-reflex in newborn infants 31-45 weeks post conceptional age.
    Bryant PR; Eng GD
    Arch Phys Med Rehabil; 1991 Jan; 72(1):28-30. PubMed ID: 1985620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunocytochemical analysis of fibre type differentiation in developing skeletal muscle.
    Moore SE; Hurko O; Walsh FS
    J Neuroimmunol; 1984 Dec; 7(2-3):137-49. PubMed ID: 6392332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative study of the histochemical and morphometric characteristics of the human cricopharyngeus muscle.
    Brownlow H; Whitmore I; Willan PL
    J Anat; 1989 Oct; 166():67-75. PubMed ID: 2621147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skeletal muscle in preterm infants with congenital myotonic dystrophy. Morphologic and histochemical study.
    Sahgal V; Bernes S; Sahgal S; Lischwey C; Subramani V
    J Neurol Sci; 1983 Apr; 59(1):47-55. PubMed ID: 6222163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postnatal growth and differentiation of muscle fibres in the mouse. II. A histochemical and morphometrical investigation of dystrophic muscle.
    Wirtz P; Loermans HM; Peer PG; Reintjes AG
    J Anat; 1983 Aug; 137 (Pt 1)(Pt 1):127-42. PubMed ID: 6630028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Does the brain influence the muscular development of the human fetus? Evidence in 21 cases].
    Sarnat HB
    Can J Neurol Sci; 1985 May; 12(2):111-20. PubMed ID: 4016591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Further histochemical studies on masticatory muscles.
    Vignon C; Pellissier JF; Serratrice G
    J Neurol Sci; 1980 Mar; 45(2-3):157-76. PubMed ID: 6445000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Quantification of the diameter of muscular fibres in the course of the development of the quadriceps].
    Barbet JP; Butler-Browne GS; Labbe S; Maillet M; Pompidou A
    Bull Assoc Anat (Nancy); 1991 Sep; 75(230):25-9. PubMed ID: 1790348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.