These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 4369222)

  • 1. Structure-function relationship in rabbit muscle glyceraldehyde-3-phosphate dehydrogenase. Trinitrophenylation of the lysine residues.
    Foucault G; Traore F; Levilliers J; Pudles J
    Eur J Biochem; 1974 Jul; 46(1):43-57. PubMed ID: 4369222
    [No Abstract]   [Full Text] [Related]  

  • 2. Relationship between structure and chemical reactivity in D-glyceraldehyde 3-phosphate dehydrogenase. Trinitrophenylation of the lysine residues in yeast, sturgeon and rabbit muscle enzyme.
    Nakano M; Foucault G; Pudles J
    J Mol Biol; 1976 Aug; 105(2):275-91. PubMed ID: 184288
    [No Abstract]   [Full Text] [Related]  

  • 3. Half-of-the-sites and all-of-the-sites reactivity in rabbit muscle glyceraldehyde 3-phosphate dehydrogenase.
    Levitzki A
    J Mol Biol; 1974 Dec; 90(3):451-68. PubMed ID: 4375201
    [No Abstract]   [Full Text] [Related]  

  • 4. [Comparative study on the chemical modification of sulfhydryl groups of glyceraldehyde-3-phosphate dehydrogenases from yeast and rabbit muscle. The relationship between structure and chemical reactivity].
    Bodo JM; Foucault G
    Biochimie; 1982 Jul; 64(7):477-86. PubMed ID: 7126683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fluorescent probe for the coenzyme-induced structural changes in glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle.
    Price NC; Radda GK
    Biochim Biophys Acta; 1974 Nov; 371(1):102-6. PubMed ID: 4371851
    [No Abstract]   [Full Text] [Related]  

  • 6. Effects of photooxidation of histidine-38 on the various catalytic activities of glyceraldehyde-3-phosphate dehydrogenase.
    Francis SH; Meriwether BP; Park JH
    Biochemistry; 1973 Jan; 12(2):346-55. PubMed ID: 4345585
    [No Abstract]   [Full Text] [Related]  

  • 7. Inhibition and kinetic mechanism of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase.
    Orsi BA; Cleland WW
    Biochemistry; 1972 Jan; 11(1):102-9. PubMed ID: 4333192
    [No Abstract]   [Full Text] [Related]  

  • 8. [Studies on the oxidative fraction obtained by chymotrypsin hydrolysis of glyceraldehyde-3-phosphate dehydrogenase].
    Cantau B; Brunel C; Pudles J
    Biochim Biophys Acta; 1968 Nov; 167(3):511-24. PubMed ID: 4301882
    [No Abstract]   [Full Text] [Related]  

  • 9. Mechanism of nicotinamide-adenine dinucleotide binding to rabbit muscle glyceraldehyde 3-phosphate dehydrogenase.
    Hammes GG; Lillford PJ; Simplicio J
    Biochemistry; 1971 Sep; 10(20):3686-93. PubMed ID: 4328869
    [No Abstract]   [Full Text] [Related]  

  • 10. Function and role of NAD+ in mechanism of action of rabbit-muscle glyceraldehydephosphate dehydrogenase.
    de Vijlder JJ; Hilvers AG; Van Lis JM; Slater EC
    Biochim Biophys Acta; 1969 Nov; 191(2):221-8. PubMed ID: 4311145
    [No Abstract]   [Full Text] [Related]  

  • 11. Binding of NAD + and NADH to rabbit-muscle glyceraldehydephosphate dehydrogenase.
    Boers W; Oosthuizen C; Slater EC
    Biochim Biophys Acta; 1971 Oct; 250(1):35-46. PubMed ID: 4334857
    [No Abstract]   [Full Text] [Related]  

  • 12. The effect of NAD+ on the catalytic efficiency of glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle.
    Teipel J; Koshland DE
    Biochim Biophys Acta; 1970 Feb; 198(2):183-91. PubMed ID: 4313530
    [No Abstract]   [Full Text] [Related]  

  • 13. Regulation of glyceraldehyde 3-phosphate dehydrogenase by phosphocreatine and adenosine triphosphate. IV. Factors affecting in vivo control of enzymatic activity.
    Oguchi M; Gerth E; Fitzgerald B; Park JH
    J Biol Chem; 1973 Aug; 248(16):5571-6. PubMed ID: 4353270
    [No Abstract]   [Full Text] [Related]  

  • 14. Structure-function studies on glyceraldehyde 3-phosphate dehydrogenase. IV. Subunit interactions of the rabbit muscle and yeast enzymes.
    Fensleau A
    J Biol Chem; 1972 Feb; 247(4):1074-9. PubMed ID: 4334489
    [No Abstract]   [Full Text] [Related]  

  • 15. Structure-function studies on glyceraldehyde-3-phosphate dehydrogenase. II. The effects of S-carboxymethylation on enzymatic activity.
    Fenselau A; Weigel P
    Biochim Biophys Acta; 1970 Feb; 198(2):192-8. PubMed ID: 4313531
    [No Abstract]   [Full Text] [Related]  

  • 16. Reaction of rabbit muscle apo-glyceraldehyde-3-P-dehydrogenase with pyridoxal-5'-phosphate.
    Zapponi MC; Ferri G; Forcina BG; Ronchi S
    FEBS Lett; 1973 May; 31(3):287-91. PubMed ID: 4354057
    [No Abstract]   [Full Text] [Related]  

  • 17. Structure and reactivity relationship in glyceraldehyde-3-phosphate dehydrogenase. Dinitrophenylation of cysteine residues of yeast and rabbit muscle enzymes.
    Foucault G; Bodo JM; Nakano M
    Eur J Biochem; 1981 Oct; 119(3):625-32. PubMed ID: 7030743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance Raman investigation of beta-(2-furyl)-acryloyl-glyceraldehyde-3-phosphate dehydrogenase.
    Schmidt J; Benecky M; Kafina M; Watters KL; McFarland JT
    FEBS Lett; 1978 Dec; 96(2):263-8. PubMed ID: 215455
    [No Abstract]   [Full Text] [Related]  

  • 19. Mechanism of alkylation of rabbit muscle glyceraldehyde 3-phosphate dehydrogenase.
    MacQuarrie RA; Bernhard SA
    Biochemistry; 1971 Jun; 10(13):2456-66. PubMed ID: 4326767
    [No Abstract]   [Full Text] [Related]  

  • 20. The binding of NAD+ to rabbit muscle glyceraldehyde-3-phosphate dehydrogenase studied by protein fluorescence quenching.
    Price NC; Radda GK
    Biochim Biophys Acta; 1971 Apr; 235(1):27-31. PubMed ID: 4326162
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.