BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 4369250)

  • 1. Superoxide dismutase activity in WI-38 cell cultures: effects of age, trypsinization and SV-40 transformation.
    Yamanaka N; Deamer D
    Physiol Chem Phys; 1974; 6(2):95-106. PubMed ID: 4369250
    [No Abstract]   [Full Text] [Related]  

  • 2. The paradigm that all oxygen-respiring eukaryotes have cytosolic CuZn-superoxide dismutase and that Mn-superoxide dismutase is localized to the mitochondria does not apply to a large group of marine arthropods.
    Brouwer M; Brouwer TH; Grater W; Enghild JJ; Thogersen IB
    Biochemistry; 1997 Oct; 36(43):13381-8. PubMed ID: 9341231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The control of human WI-38 cell proliferation by extracellular calcium and its elimination by SV-40 virus-induced proliferative transformation.
    Boynton AL; Whitfield JF; Isaacs RJ; Tremblay R
    J Cell Physiol; 1977 Aug; 92(2):241-7. PubMed ID: 195967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transformation affects superoxide dismutase activity.
    Loven DP; Guernsey DL; Oberley LW
    Int J Cancer; 1984 Jun; 33(6):783-6. PubMed ID: 6329968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superoxide dismutase isozymes of rat lung.
    Kakkar P; Viswanathan PN
    Indian J Biochem Biophys; 1986 Dec; 23(6):339-43. PubMed ID: 3596627
    [No Abstract]   [Full Text] [Related]  

  • 6. Correlation between the loss of the transformed phenotype and an increase in superoxide dismutase activity in a revertant subclone of sarcoma virus-infected mammalian cells.
    Fernandez-Pol JA; Hamilton PD; Klos DJ
    Cancer Res; 1982 Feb; 42(2):609-17. PubMed ID: 6275983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modifications in the chromosomal proteins of SV-40 transformed WI-38 human diploid fibroblasts.
    Krause MO; Stein GS
    Biochem Biophys Res Commun; 1974 Jul; 59(2):796-803. PubMed ID: 4368922
    [No Abstract]   [Full Text] [Related]  

  • 8. Superoxide dismutase activity in leukocytes.
    DeChatelet LR; McCall CE; McPhail LC; Johnston RB
    J Clin Invest; 1974 Apr; 53(4):1197-201. PubMed ID: 4815084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superoxide dismutase and oxygen toxicity in a eukaryote.
    Gregory EM; Goscin SA; Fridovich I
    J Bacteriol; 1974 Feb; 117(2):456-60. PubMed ID: 4590469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of the cytosolic and mitochondrial superoxide dismutases of maize.
    Baum JA; Scandalios JG
    Arch Biochem Biophys; 1981 Feb; 206(2):249-64. PubMed ID: 6784678
    [No Abstract]   [Full Text] [Related]  

  • 11. Zinc treatment affects superoxide dismutase activity in growth retardation.
    Kocatürk PA; Siklar Z; Kavas GO; Dallar Y; Tanyer G
    Biol Trace Elem Res; 2002; 90(1-3):39-46. PubMed ID: 12666824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper- and zinc-containing superoxide dismutase, manganese-containing superoxide dismutase, catalase, and glutathione peroxidase in normal and neoplastic human cell lines and normal human tissues.
    Marklund SL; Westman NG; Lundgren E; Roos G
    Cancer Res; 1982 May; 42(5):1955-61. PubMed ID: 7066906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manganese-containing superoxide dismutase overexpression causes phenotypic reversion in SV40-transformed human lung fibroblasts.
    Yan T; Oberley LW; Zhong W; St Clair DK
    Cancer Res; 1996 Jun; 56(12):2864-71. PubMed ID: 8665527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of mitochondrial thymidine kinases of parental and enzyme-deficient HeLa cells.
    Kit S; Leung WC; Trkula D
    Arch Biochem Biophys; 1973 Oct; 158(2):503-13. PubMed ID: 4361106
    [No Abstract]   [Full Text] [Related]  

  • 15. Induction of manganese-superoxide dismutase in MRC-5 cells persistently infected with an alphavirus, sindbis.
    Yoshinaka Y; Takahashi Y; Nakamura S; Katoh I; Takio K; Ikawa Y
    Biochem Biophys Res Commun; 1999 Jul; 261(1):139-43. PubMed ID: 10405336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study of superoxide dismutase activity in polymorphonuclear leukocytes, monocytes, and alveolar macrophages of the guinea pig.
    Rister M; Baehner RL
    J Cell Physiol; 1976 Mar; 87(3):345-55. PubMed ID: 1254655
    [No Abstract]   [Full Text] [Related]  

  • 17. Replacement of a cytosolic copper/zinc superoxide dismutase by a novel cytosolic manganese superoxide dismutase in crustaceans that use copper (haemocyanin) for oxygen transport.
    Brouwer M; Hoexum Brouwer T; Grater W; Brown-Peterson N
    Biochem J; 2003 Aug; 374(Pt 1):219-28. PubMed ID: 12769817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superoxide dismutase mimetics elevate superoxide dismutase activity in vivo but do not retard aging in the nematode Caenorhabditis elegans.
    Keaney M; Matthijssens F; Sharpe M; Vanfleteren J; Gems D
    Free Radic Biol Med; 2004 Jul; 37(2):239-50. PubMed ID: 15203195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regucalcin increases superoxide dismutase activity in the heart cytosol of normal and regucalcin transgenic rats.
    Ichikawa E; Yamaguchi M
    Int J Mol Med; 2004 Oct; 14(4):691-5. PubMed ID: 15375603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The oxidative stress response of the yeast Candida intermedia to copper, zinc, and selenium exposure.
    Fujs S; Gazdag Z; Poljsak B; Stibilj V; Milacic R; Pesti M; Raspor P; Batic M
    J Basic Microbiol; 2005; 45(2):125-35. PubMed ID: 15812857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.