BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 4369732)

  • 1. A spin-label study of the photosynthetic bacterium, Rhodospirillum rubrum; Reduction and regeneration of nitroxide spin-labels.
    Maruyama K; Onishi S
    J Biochem; 1974 May; 75(5):1153-64. PubMed ID: 4369732
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of stearic spin-labels on the photochemical activities of chromatophores from Rhodospirillum rubrum.
    Maruyama K; Onishi S
    J Biochem; 1974 May; 75(5):1165-8. PubMed ID: 4213074
    [No Abstract]   [Full Text] [Related]  

  • 3. [Interaction of redox mediators with chromatophores of the photosynthetic bacterium Rhodospirillum rubrum].
    Sled' VD; Verkhovskiĭ MI; Shinkarev VP; Mulkidzhanian AIa; Grishanova NP
    Mol Biol (Mosk); 1983; 17(1):33-41. PubMed ID: 6408397
    [No Abstract]   [Full Text] [Related]  

  • 4. Magnetophotoselection applied to the triplet state observed by EPR in photosynthetic bacteria.
    Thurnauer MC; Norris JR
    Biochem Biophys Res Commun; 1976 Nov; 73(2):501-6. PubMed ID: 187200
    [No Abstract]   [Full Text] [Related]  

  • 5. Characterization of the phototrap in photosynthetic bacteria.
    Loach PA; Kung M; Hales BJ
    Ann N Y Acad Sci; 1975 Apr; 244():297-319. PubMed ID: 237454
    [No Abstract]   [Full Text] [Related]  

  • 6. [Effect of temperature on the dark reduction of photooxidized bacteriochlorophyll P870 in Rhodospirillum rubrum photosynthetic bacteria].
    Lukashev EP; Noks PP; Kononenko AA; Venediktov PS; Rubin AB
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1975; (7):48-55. PubMed ID: 809066
    [No Abstract]   [Full Text] [Related]  

  • 7. [Application of polarography to studies on redox systems in bio-membranes: especially on photosynthetic electron transport system in chromatophore membrane from photosynthetic bacterium (author's transl)].
    Erabi T; Tanaka M; Yamashita J; Horio T
    Tanpakushitsu Kakusan Koso; 1979; 24(5):696-708. PubMed ID: 112648
    [No Abstract]   [Full Text] [Related]  

  • 8. Photo-induced electron transport and water state in Rhodospirillum rubrum chromatophores.
    Nikolaev GM; Knox PP; Kononenko AA; Grishanova NP; Rubin AB
    Biochim Biophys Acta; 1980 Apr; 590(2):194-201. PubMed ID: 6768386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flash photolysis-electron spin resonance study of the effect of o-phenanthroline and temperature on the decay time of the ESR signal B1 in reaction-center preparations and chromatophores of mutant and wild strains of Rhodopseudomonas spheroides and Rhodospirillum rubrum.
    Hsi ES; Bolton JR
    Biochim Biophys Acta; 1974 Apr; 347(1):126-33. PubMed ID: 4373063
    [No Abstract]   [Full Text] [Related]  

  • 10. Photosynthetic regeneration of ATP using bacterial chromatophores.
    Pace GW; Yang HS; Tannenbaum SR; Archer MC
    Biotechnol Bioeng; 1976 Oct; 18(10):1413-23. PubMed ID: 822897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primary oxidation-reduction changes during photosynthesis in Rhodospirillum rubrum.
    Loach PA
    Biochemistry; 1966 Feb; 5(2):592-600. PubMed ID: 4287373
    [No Abstract]   [Full Text] [Related]  

  • 12. Role of bound ADP in photosynthetic ATP formation by chromatophores from Rhodospirillum rubrum.
    Yammamoto N; Yoshimura S; Higuti T; Nishikawa K; Horio T
    J Biochem; 1972 Dec; 72(6):1397-406. PubMed ID: 4198252
    [No Abstract]   [Full Text] [Related]  

  • 13. Reaction center bacteriochlorophyll triplet states: redox potential dependence and kinetics.
    Leigh JS; Dutton PL
    Biochim Biophys Acta; 1974 Jul; 357(1):67-77. PubMed ID: 4370313
    [No Abstract]   [Full Text] [Related]  

  • 14. Competition between Pi and pH indicators in photosynthetic ATP formation in chromatophores of Rhodospirillum rubrum.
    Hosoi K; Yoshimura S; Soe G; Kakuno T; Horio T
    J Biochem; 1973 Dec; 74(6):1275-8. PubMed ID: 4205462
    [No Abstract]   [Full Text] [Related]  

  • 15. A novel short-lived emission from the photosynthetic bacterium Rhodospirillum rubrum.
    Silberstein BR; Malkin S; Haas E
    FEBS Lett; 1976 Apr; 63(2):299-303. PubMed ID: 816674
    [No Abstract]   [Full Text] [Related]  

  • 16. Evidence for a correlation between the photoinduced electron transfer and dynamic properties of the chromatophore membranes from Rhodospirillum rubrum.
    Parak F; Frolov EN; Kononenko AA; Mössbauer RL; Goldanskii VI; Rubin AB
    FEBS Lett; 1980 Aug; 117(1):368-72. PubMed ID: 6773810
    [No Abstract]   [Full Text] [Related]  

  • 17. [Functional organization of the electron transport chain of Rhodospirillum rubrum chromatophores in the absence of an exogenous electron donor].
    Ratynĭ AI; Riznichenko GIu; Chamorovskiĭ SK; Vorob'eva TN; Pyt'eva NF
    Biofizika; 1979; 24(4):671-5. PubMed ID: 113038
    [No Abstract]   [Full Text] [Related]  

  • 18. Electron and proton transport in Rhodospirillum rubrum chromatophores.
    Kakuno T; Hosoi K; Higuti T; Horio T
    J Biochem; 1973 Dec; 74(6):1193-203. PubMed ID: 4360811
    [No Abstract]   [Full Text] [Related]  

  • 19. The pigment complement of the photosynthetic reaction center isolated from Rhodospirillum rubrum.
    Van der Rest M; Gingras G
    J Biol Chem; 1974 Oct; 249(20):6446-53. PubMed ID: 4214257
    [No Abstract]   [Full Text] [Related]  

  • 20. [Free radical centers in the chromatophores and preparations of Rhodospirillum rubrum reaction centers].
    Smirnova IA; Tikhonov AN; Konstantinov AA; Ruuge EK
    Biofizika; 1979; 24(4):761-2. PubMed ID: 224953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.