These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 436977)

  • 1. Anterior zonular shifts with age.
    Farnsworth PN; Shyne SE
    Exp Eye Res; 1979 Mar; 28(3):291-7. PubMed ID: 436977
    [No Abstract]   [Full Text] [Related]  

  • 2. Questioning our classical understanding of accommodation and presbyopia.
    Adler-Grinberg D
    Am J Optom Physiol Opt; 1986 Jul; 63(7):571-80. PubMed ID: 3526908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scanning electron microscopic studies of the zonular apparatus in human and monkey eyes.
    Rohen JW
    Invest Ophthalmol Vis Sci; 1979 Feb; 18(2):133-44. PubMed ID: 104933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The aetiology of presbyopia: a summary of the role of lenticular and extralenticular structures.
    Gilmartin B
    Ophthalmic Physiol Opt; 1995 Sep; 15(5):431-7. PubMed ID: 8524570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cause and treatment of presbyopia with a method for increasing the amplitude of accommodation.
    Schachar RA
    Ann Ophthalmol; 1992 Dec; 24(12):445-7, 452. PubMed ID: 1485739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anteriorly located zonular fibres as a tool for fine regulation in accommodation.
    Flügel-Koch CM; Croft MA; Kaufman PL; Lütjen-Drecoll E
    Ophthalmic Physiol Opt; 2016 Jan; 36(1):13-20. PubMed ID: 26490669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anterior shift of zonular insertion onto the anterior surface of human crystalline lens with age.
    Sakabe I; Oshika T; Lim SJ; Apple DJ
    Ophthalmology; 1998 Feb; 105(2):295-9. PubMed ID: 9479290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Presbyopia and the optical changes in the human crystalline lens with age.
    Glasser A; Campbell MC
    Vision Res; 1998 Jan; 38(2):209-29. PubMed ID: 9536350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Anatomical, morphological and biomechanical aspects of accommodation].
    Avetisov SE; Shitikova AV; Avetisov KS
    Vestn Oftalmol; 2022; 138(4):117-125. PubMed ID: 36004600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The suspensory apparatus of the canine lens.
    Curtis R
    J Anat; 1983 Jan; 136(Pt 1):69-83. PubMed ID: 6833122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus.
    Koretz JF; Cook CA; Kaufman PL
    Invest Ophthalmol Vis Sci; 1997 Mar; 38(3):569-78. PubMed ID: 9071209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accommodation and presbyopia.
    Atchison DA
    Ophthalmic Physiol Opt; 1995 Jul; 15(4):255-72. PubMed ID: 7667018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presbyopia, accommodation, and mature catenary.
    Zdenek G
    Ophthalmology; 2002 Aug; 109(8):1415; author reply 1416-8. PubMed ID: 12153783
    [No Abstract]   [Full Text] [Related]  

  • 14. Quantification of long anterior lens zonules and their resulting zonule-free zone sizes.
    Roberts DK; Yang Y; Morettin CE; Doan T; Newman TL; Wilensky JT
    Clin Exp Ophthalmol; 2015 Nov; 43(8):773-5. PubMed ID: 25996437
    [No Abstract]   [Full Text] [Related]  

  • 15. The mechanism of accommodation and presbyopia.
    Schachar RA
    Int Ophthalmol Clin; 2006; 46(3):39-61. PubMed ID: 16929224
    [No Abstract]   [Full Text] [Related]  

  • 16. MRI study of the changes in crystalline lens shape with accommodation and aging in humans.
    Kasthurirangan S; Markwell EL; Atchison DA; Pope JM
    J Vis; 2011 Mar; 11(3):. PubMed ID: 21441300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo determination of the biomechanical properties of the component elements of the accommodation mechanism.
    Beers AP; Van Der Heijde GL
    Vision Res; 1994 Nov; 34(21):2897-905. PubMed ID: 7975324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volume change of the ocular lens during accommodation.
    Gerometta R; Zamudio AC; Escobar DP; Candia OA
    Am J Physiol Cell Physiol; 2007 Aug; 293(2):C797-804. PubMed ID: 17537805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-invasive measurements of the dynamic changes in the ciliary muscle, crystalline lens morphology, and anterior chamber during accommodation with a high-resolution OCT.
    Esteve-Taboada JJ; Domínguez-Vicent A; Monsálvez-Romín D; Del Águila-Carrasco AJ; Montés-Micó R
    Graefes Arch Clin Exp Ophthalmol; 2017 Jul; 255(7):1385-1394. PubMed ID: 28424868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Change in the accommodative force on the lens of the human eye with age.
    Hermans EA; Dubbelman M; van der Heijde GL; Heethaar RM
    Vision Res; 2008 Jan; 48(1):119-26. PubMed ID: 18054980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.