These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 4369925)

  • 1. Dilution kinetic studies of yeast populations: in vivo aggregation of galactose utilizing enzymes and positive regulator molecules.
    Tsuyumu S; Adams BG
    Genetics; 1974 Jul; 77(3):491-505. PubMed ID: 4369925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Population analysis of the deinduction kinetics of galactose long-term adaptation mutants of yeast.
    Tsuyumu S; Adams BG
    Proc Natl Acad Sci U S A; 1973 Mar; 70(3):919-23. PubMed ID: 4577139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic and molecular analysis of the GAL3 gene in the expression of the galactose/melibiose regulon of Saccharomyces cerevisiae.
    Torchia TE; Hopper JE
    Genetics; 1986 Jun; 113(2):229-46. PubMed ID: 3013721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemistry and genetics of galactose metabolism in group H Streptococcus strain Challis.
    Luginbuhl GH; Gooder H
    J Bacteriol; 1972 Feb; 109(2):512-9. PubMed ID: 5058440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of GAL4 gene dosage on the level of galactose catabolic enzymes in Saccharomyces cerevisiae.
    Klar AJ; Halvorson HO
    J Bacteriol; 1976 Jan; 125(1):379-81. PubMed ID: 1107315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of inducer formation in gal3 mutants of the yeast galactose system is independent of normal galactose metabolism and mitochondrial respiratory function.
    Bhat PJ; Hopper JE
    Genetics; 1991 Jun; 128(2):233-9. PubMed ID: 2071013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the positive regulatory gene, GAL4, in regulation of galactose catabolic enzymes in Saccharomyces cerevisiae.
    Klar AJ; Halvorson HO
    Mol Gen Genet; 1974; 135(3):203-12. PubMed ID: 4376212
    [No Abstract]   [Full Text] [Related]  

  • 8. Analysis of the GAL3 signal transduction pathway activating GAL4 protein-dependent transcription in Saccharomyces cerevisiae.
    Bhat PJ; Oh D; Hopper JE
    Genetics; 1990 Jun; 125(2):281-91. PubMed ID: 2199310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of the galactose pathway in Saccharomyces cerevisiae: induction of uridyl transferase mRNA and dependency on GAL4 gene function.
    Hopper JE; Broach JR; Rowe LB
    Proc Natl Acad Sci U S A; 1978 Jun; 75(6):2878-82. PubMed ID: 351620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple regulator gene control of the galactose operon in Escherichia coli K-12.
    Hua SS; Markovitz A
    J Bacteriol; 1972 Jun; 110(3):1089-99. PubMed ID: 4555404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactose and D-galactose metabolism in group N streptococci: presence of enzymes for both the D-galactose 1-phosphate and D-tagatose 6-phosphate pathways.
    Bissett DL; Anderson RL
    J Bacteriol; 1974 Jan; 117(1):318-20. PubMed ID: 4358045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic galactokinase expression underlies GAL gene induction in a GAL3 mutant of Saccharomyces cerevisiae.
    Kar RK; Qureshi MT; DasAdhikari AK; Zahir T; Venkatesh KV; Bhat PJ
    FEBS J; 2014 Apr; 281(7):1798-817. PubMed ID: 24785355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The occurrence of the Leloir pathway in non-pathogenic mycobacteria.
    Szumiło T
    Acta Microbiol Pol; 1981; 30(4):327-33. PubMed ID: 6179392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IMP1/imp1: a gene involved in the nucleo-mitochondrial control of galactose fermentation in Saccharomyces cerevisiae.
    Algeri AA; Bianchi L; Viola AM; Puglisi PP; Marmiroli N
    Genetics; 1981 Jan; 97(1):27-44. PubMed ID: 7021320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uninducible mutants in the gal i locus of Saccharomyces cerevisiae.
    Douglas HC; Hawthorne CD
    J Bacteriol; 1972 Mar; 109(3):1139-43. PubMed ID: 4551746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutant hamster cells exhibiting a pleiotropic effect on carbohydrate metabolism.
    Sun NC; Chang CC; Chu EH
    Proc Natl Acad Sci U S A; 1975 Feb; 72(2):469-73. PubMed ID: 164654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The production of enzymes involved in exopolysaccharide synthesis in Klebsiella aerogenes types 1 and 8.
    Norval M; Sutherland IW
    Eur J Biochem; 1973 Jun; 35(2):209-15. PubMed ID: 4717925
    [No Abstract]   [Full Text] [Related]  

  • 18. Regulation of expression of the galactose gene cluster in Saccharomyces cerevisiae. II. The isolation and dosage effect of the regulatory gene GAL80.
    Nogi Y; Shimada H; Matsuzaki Y; Hashimoto H; Fukasawa T
    Mol Gen Genet; 1984; 195(1-2):29-34. PubMed ID: 6092855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GAL3 gene product is required for maintenance of the induced state of the GAL cluster genes in Saccharomyces cerevisiae.
    Nogi Y
    J Bacteriol; 1986 Jan; 165(1):101-6. PubMed ID: 3510183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of dimethylsulfoxide on the E. coli gal operon and on bacteriophage lambda in vivo.
    Nakanishi S; Adhya S; Gottesman M; Pastan I
    Cell; 1974 Sep; 3(1):39-46. PubMed ID: 4369966
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.