BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 4370118)

  • 1. Interaction of manganous ion, substrates, and anions with arginine kinase. Magnetic relaxation rate studies of water protons and kinetic anion effects.
    Buttlaire DH; Cohn M
    J Biol Chem; 1974 Sep; 249(18):5733-40. PubMed ID: 4370118
    [No Abstract]   [Full Text] [Related]  

  • 2. Characterization of the active site structures of arginine kinase-substrate complexes. Water proton magnetic relaxation rates and electron paramagnetic resonance spectra of manganous-enzyme complexes with substrates and of a transition state analog.
    Buttlaire DH; Cohn M
    J Biol Chem; 1974 Sep; 249(18):5741-8. PubMed ID: 4369851
    [No Abstract]   [Full Text] [Related]  

  • 3. Structural changes induced by substrates and anions at the active site of creatine kinase. Electron paramagnetic resonance and nuclear magnetic relaxation rate studies of the manganous complexes.
    Reed GH; Cohn M
    J Biol Chem; 1972 May; 247(10):3073-81. PubMed ID: 4337505
    [No Abstract]   [Full Text] [Related]  

  • 4. Structural studies of transition state analog complexes of creatine kinase.
    Reed GH; McLaughlin AC
    Ann N Y Acad Sci; 1973 Dec; 222():118-29. PubMed ID: 4361852
    [No Abstract]   [Full Text] [Related]  

  • 5. Magnetic resonance studies of specificity in binding and catalysis of phosphotransferases.
    Cohn M
    Ciba Found Symp; 1975; (31):87-104. PubMed ID: 168046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 31P and 1H NMR studies of the structure of enzyme-bound substrate complexes of lobster muscle arginine kinase: relaxation measurements with Mn(II) and Co(II).
    Jarori GK; Ray BD; Nageswara Rao BD
    Biochemistry; 1989 Nov; 28(24):9343-50. PubMed ID: 2558717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies of manganous nucleotide complexes with uridine diphosphate-glucose pyrophosphorylase, formyltetrahydrofolate synthetase, and creatine kinase. Mechanism of water proton magnetic relaxation from frequency dependent measurements.
    Reed GH; Diefenbach H; Cohn M
    J Biol Chem; 1972 May; 247(10):3066-72. PubMed ID: 5027742
    [No Abstract]   [Full Text] [Related]  

  • 8. 31P nuclear magnetic resonance of bound substrates of arginine kinase reaction: chemical shifts in binary, ternary, quaternary, and transition state analog complexes.
    Rao BD; Cohn M
    J Biol Chem; 1977 May; 252(10):3344-50. PubMed ID: 16895
    [No Abstract]   [Full Text] [Related]  

  • 9. Effects of arginine and some analogues of the partial adenosine triphosphate-adenosine diphosphate exchange reaction catalysed by arginine kinase. Evolutionary divergence in the mechanism of action of a monomer and a dimer arginine kinase.
    Anosike EO; Watts DC
    Biochem J; 1976 Jun; 155(3):689-93. PubMed ID: 182135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specificity of creatine kinase for guanidino substrates. Kinetic and proton nuclear magnetic relaxation rate studies.
    McLaughlin AC; Cohn M; Kenyon GL
    J Biol Chem; 1972 Jul; 247(13):4382-8. PubMed ID: 5035696
    [No Abstract]   [Full Text] [Related]  

  • 11. Magnetic resonance study of the three-dimensional structure of creatine kinase-substrate complexes. Implications for substrate specificity and catalytic mechanism.
    McLaughlin AC; Leigh JS; Cohn M
    J Biol Chem; 1976 May; 251(9):2777-87. PubMed ID: 177421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the lysyl residue at the active site of creatine kinase. Nuclear Overhauser effect studies.
    James TL; Cohn M
    J Biol Chem; 1974 Apr; 249(8):2599-604. PubMed ID: 4856652
    [No Abstract]   [Full Text] [Related]  

  • 13. The role of creatine kinase and arginine kinase in muscle.
    Newsholme EA; Beis I; Leech AR; Zammit VA
    Biochem J; 1978 Jun; 172(3):533-7. PubMed ID: 210761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron-paramagnetic-resonance studies of Mn(II) complexes with enzymes and substrates.
    Reed GH
    Biochem Soc Trans; 1985 Jun; 13(3):567-71. PubMed ID: 2993063
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects of anions on a monomeric and a dimeric arginine kinase.
    Anosike EO; Watts DC
    Biochem J; 1975 Aug; 149(2):387-95. PubMed ID: 170913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoaffinity labelling of arginine kinase and creatine kinase with a gamma-P-substituted arylazido analogue of ATP.
    Vandest P; Labbe JP; Kassab R
    Eur J Biochem; 1980 Mar; 104(2):433-42. PubMed ID: 6244950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple effects of anions on ATP:L-arginine phosphotransferases.
    Thiem NV; Lacombe G; Thoai NV
    Biochim Biophys Acta; 1972 Feb; 258(2):422-35. PubMed ID: 5010294
    [No Abstract]   [Full Text] [Related]  

  • 18. Electron paramagnetic resonance and water proton relaxation rate studies of formyltetrahydrofolate synthetase-manganous ion complexes. Evidence for involvement of substrates in the promotion of a catalytically competent active site.
    Buttlaire DH; Reed GH; Himes R
    J Biol Chem; 1975 Jan; 250(1):261-70. PubMed ID: 166989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic resonance studies of the interaction of spin-labeled creatine kinase with paramagnetic manganese-substrate complexes.
    Cohn M; Diefenbach H; Taylor JS
    J Biol Chem; 1971 Oct; 246(19):6037-42. PubMed ID: 4330065
    [No Abstract]   [Full Text] [Related]  

  • 20. Nucleoside triphosphate metabolism in the muscle tissue of Ascaris lumbricoides (Nematoda).
    Barrett J
    Int J Parasitol; 1973 May; 3(3):393-400. PubMed ID: 4732034
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.