BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 4370118)

  • 21. Magnetic resonance studies of three forms of creatine kinase. Comparison of the properties of native, CH-S-blocked, and H2NCOCH-blocked enzymes.
    Markham GD; Reed GH
    J Biol Chem; 1977 Feb; 252(4):1197-201. PubMed ID: 838713
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electron paramagnetic resonance and proton relaxation rate studies of spin-labeled creatine kinase and its complexes.
    Taylor JS; McLaughlin A; Cohn M
    J Biol Chem; 1971 Oct; 246(19):6029-36. PubMed ID: 4330064
    [No Abstract]   [Full Text] [Related]  

  • 23. Structure of metal-nucleotide complexes bound to creatine kinase: 31P NMR measurements using Mn(II) and Co(II).
    Jarori GK; Ray BD; Nageswara Rao BD
    Biochemistry; 1985 Jul; 24(14):3487-94. PubMed ID: 4041424
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural investigations of the Mg.ATP complex at the active site of porcine adenylate kinase using phosphorothioate analogs and electron paramagnetic resonance of Mn(II) with chiral 17O-labelled ATP analogs.
    Kalbitzer HR; Marquetant R; Connolly BA; Goody RS
    Eur J Biochem; 1983 Jun; 133(1):221-7. PubMed ID: 6303784
    [No Abstract]   [Full Text] [Related]  

  • 25. Kinetics of slow reversible inhibition of human muscle creatine kinase by planar anions.
    Luo W; Xie WZ; Bai JH; Zhou HM
    J Biochem; 1998 Oct; 124(4):702-6. PubMed ID: 9756613
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reactivity and metal-dependent stereospecificity of the phosphorothioate analogs of ATP in the arginine kinase reaction. Structure of the metal-nucleoside triphosphate substrate.
    Cohn M; Shih N; Nick J
    J Biol Chem; 1982 Jul; 257(13):7646-9. PubMed ID: 6282848
    [No Abstract]   [Full Text] [Related]  

  • 27. Spectrophotometric and fluorescence studies of the interaction of adenine nucleotides with arginine kinase of Homarus americanus.
    Lum WS; Wong PW; Yang MS; Buttlaire DH
    J Biol Chem; 1978 Sep; 253(17):6226-32. PubMed ID: 210171
    [No Abstract]   [Full Text] [Related]  

  • 28. Effect of substrate - binding on the immunologic reactivity of lobster - muscle arginine kinase : a comparison with rabbit - muscle creatine kinase.
    Benyamin Y; Robin Y
    Biochimie; 1975; 57(10):1215-9. PubMed ID: 177087
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic and magnetic resonance studies of the interaction of oxalate with pyruvate kinase.
    Reed GH; Morgan SD
    Biochemistry; 1974 Aug; 13(17):3537-41. PubMed ID: 4367426
    [No Abstract]   [Full Text] [Related]  

  • 30. The reaction of creatine kinase with 2-chloromercuri-4-nitrophenol.
    Quiocho FA; Olson JS
    J Biol Chem; 1974 Sep; 249(18):5885-8. PubMed ID: 4416451
    [No Abstract]   [Full Text] [Related]  

  • 31. Kinetic properties of the arginine kinase isoenzymes of Limulus polyphemus.
    Blethen SL
    Arch Biochem Biophys; 1972 Mar; 149(1):244-51. PubMed ID: 5017253
    [No Abstract]   [Full Text] [Related]  

  • 32. Studies on manganese-substrate complexes of arginine kinase from Panulirus longipes.
    O'Sullivan WJ; Smith E; Chapman BE; Marsden KH
    Biochim Biophys Acta; 1974 Nov; 370(1):153-9. PubMed ID: 4371844
    [No Abstract]   [Full Text] [Related]  

  • 33. Nuclear magnetic relaxation studies of the conformation of adenosine 5'-triphosphate on pyruvate kinase from rabbit muscle.
    Sloan DL; Mildvan AS
    J Biol Chem; 1976 Apr; 251(8):2412-20. PubMed ID: 177414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nucleotide binding to myosin in calcium activated muscle.
    Marston SB; Tregear RT
    Biochim Biophys Acta; 1974 Mar; 333(3):581-4. PubMed ID: 4277060
    [No Abstract]   [Full Text] [Related]  

  • 35. Investigations of substrate specificity and reaction mechanism of several kinases using chromium(III) adenosine 5'-triphosphate and chromium(III) adenosine 5'-diphosphate.
    Dunaway-Mariano D; Cleland WW
    Biochemistry; 1980 Apr; 19(7):1506-15. PubMed ID: 6248105
    [No Abstract]   [Full Text] [Related]  

  • 36. Differentiation of nucleotide binding sites and role of metal ion in the adenylate kinase reaction by 31P NMR. Equilibria, interconversion rates, and NMR parameters of bound substrates.
    Nageswara Rao BD; Cohn M; Noda L
    J Biol Chem; 1978 Feb; 253(4):1149-58. PubMed ID: 203583
    [No Abstract]   [Full Text] [Related]  

  • 37. Two-dimensional transferred nuclear Overhauser effect spectroscopy (TRNOESY) studies of nucleotide conformations in arginine kinase complexes.
    Murali N; Jarori GK; Rao BD
    Biochemistry; 1994 Nov; 33(47):14227-36. PubMed ID: 7947834
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nuclear magnetic resonance studies of the role of histidine residues at the active site of rabbit muscle creatine kinase.
    Rosevear PR; Desmeules P; Kenyon GL; Mildvan AS
    Biochemistry; 1981 Oct; 20(21):6155-64. PubMed ID: 7306503
    [No Abstract]   [Full Text] [Related]  

  • 39. Magnetic resonance studies on the interaction of metal-ion and nucleotide ligands with brain hexokinase.
    Jarori GK; Mehta A; Kasturi SR; Kenkare UW
    Eur J Biochem; 1984 Sep; 143(3):669-76. PubMed ID: 6090139
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calculated equilibria of phosphocreatine and adenosine phosphates during utilization of high energy phosphate by muscle.
    McGilvery RW; Murray TW
    J Biol Chem; 1974 Sep; 249(18):5845-50. PubMed ID: 4369824
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.