These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
68 related articles for article (PubMed ID: 43702)
1. Ruminal adaptation to increasing levels of concentrates. Van Vuuren AM; Hemke G; Tamminga S Ann Rech Vet; 1979; 10(2-3):445-7. PubMed ID: 43702 [No Abstract] [Full Text] [Related]
2. Diminishing rumen butyrogenesis in bulls and sheep fed sugar beets. Leontowicz H; Barej W; Kulasek G; Chomyszyn M Ann Rech Vet; 1979; 10(2-3):454-6. PubMed ID: 43703 [No Abstract] [Full Text] [Related]
3. Variations in ruminal lactate, volatile fatty acids, and pH from reconstitution of sorghum grain. Helm RE; Lane GT; Leighton RE J Dairy Sci; 1972 Jul; 55(7):979-82. PubMed ID: 5037011 [No Abstract] [Full Text] [Related]
4. Rumen fermentations with NaOH-straw rations. Van Eenaeme C; Lambot O; Binefait JM; Nicks B; Van Nevel C Ann Rech Vet; 1979; 10(2-3):323-5. PubMed ID: 43699 [No Abstract] [Full Text] [Related]
5. [Effects of the addition of iso-acids to feed on ruminal fermentation, in sacco degradation of dry matter and the concentration of several blood parameters in cows]. Andries JI; Cottyn BG; De Keersmaecker S; Buysse FX Reprod Nutr Dev; 1990; Suppl 2():181s-182s. PubMed ID: 2206319 [TBL] [Abstract][Full Text] [Related]
6. Abomasal displacement in cattle: influence of concentrates in the ration on fatty acid concentrations in ruminal, abomasal, and duodenal contents. Breukink HJ; de Ruyter T Am J Vet Res; 1976 Oct; 37(10):1181-4. PubMed ID: 984544 [TBL] [Abstract][Full Text] [Related]
7. Manipulation of ruminal fermentation. IV. Effect of altering ruminal pH on volatile fatty acid production. Esdale WJ; Satter LD J Dairy Sci; 1972 Jul; 55(7):964-70. PubMed ID: 5037009 [No Abstract] [Full Text] [Related]
8. [Changes in the ruminal contents in suppurative surgical infection in cattle]. Petrov M Vet Med Nauki; 1979; 16(5):29-34. PubMed ID: 44584 [TBL] [Abstract][Full Text] [Related]
9. Effect of rumen-degradable protein balance deficit on voluntary intake, microbial protein synthesis, and nitrogen metabolism in growing double-muscled Belgian Blue bulls fed corn silage-based diet. Valkeners D; Théwis A; Van Laere M; Beckers Y J Anim Sci; 2008 Mar; 86(3):680-90. PubMed ID: 18073288 [TBL] [Abstract][Full Text] [Related]
10. Effects of feeding frequency on intake, ruminal fermentation, and feeding behavior in heifers fed high-concentrate diets. Robles V; González LA; Ferret A; Manteca X; Calsamiglia S J Anim Sci; 2007 Oct; 85(10):2538-47. PubMed ID: 17609471 [TBL] [Abstract][Full Text] [Related]
11. Effects of Fusarium toxin-contaminated wheat grain on nutrient turnover, microbial protein synthesis and metabolism of deoxynivalenol and zearalenone in the rumen of dairy cows. Dänicke S; Matthäus K; Lebzien P; Valenta H; Stemme K; Ueberschär KH; Razzazi-Fazeli E; Böhm J; Flachowsky G J Anim Physiol Anim Nutr (Berl); 2005 Oct; 89(9-10):303-15. PubMed ID: 16138860 [TBL] [Abstract][Full Text] [Related]
12. [The relationship between the acidity of the rumen contents and the proliferation status of the rumen mucosa in cattle]. Weiss B Berl Munch Tierarztl Wochenschr; 1994 Mar; 107(3):73-8. PubMed ID: 7993341 [TBL] [Abstract][Full Text] [Related]
13. Matching plant and animal processes to alter nutrient supply in strip-grazed cattle: timing of herbage and fasting allocation. Gregorini P; Gunter SA; Beck PA J Anim Sci; 2008 Apr; 86(4):1006-20. PubMed ID: 18192561 [TBL] [Abstract][Full Text] [Related]
14. [Cattle feed: factors that influence the value of starch]. Malestein A Tijdschr Diergeneeskd; 2009 Jun; 134(12):524-5. PubMed ID: 19579380 [No Abstract] [Full Text] [Related]
15. Effect of level of intake on digestibility of nutrients and certain rumen metabolites in cattle and buffaloes. Rao DV; Raghavan GV Indian Vet J; 1978 Dec; 55(12):966-72. PubMed ID: 751974 [No Abstract] [Full Text] [Related]
16. Relationship between thiamine concentration and fermentation patterns in the rumen fluid of dairy cows fed with graded concentrate levels. Tafaj M; Schollenberger M; Feofilowa J; Zebeli Q; Steingass H; Drochner W J Anim Physiol Anim Nutr (Berl); 2006 Aug; 90(7-8):335-43. PubMed ID: 16867079 [TBL] [Abstract][Full Text] [Related]
17. Changes in rumen microbial fermentation are due to a combined effect of type of diet and pH. Calsamiglia S; Cardozo PW; Ferret A; Bach A J Anim Sci; 2008 Mar; 86(3):702-11. PubMed ID: 18073289 [TBL] [Abstract][Full Text] [Related]
18. Subacute rumen acidosis in lactating cows: an investigation in intensive Italian dairy herds. Morgante M; Stelletta C; Berzaghi P; Gianesella M; Andrighetto I J Anim Physiol Anim Nutr (Berl); 2007 Jun; 91(5-6):226-34. PubMed ID: 17516944 [TBL] [Abstract][Full Text] [Related]
19. Effect of monensin on bovine ruminal 3-methylindole production after abrupt change to lush pasture. Carlson JR; Hammond AC; Breeze RG; Potchoiba MJ; Heinemann WW Am J Vet Res; 1983 Jan; 44(1):118-22. PubMed ID: 6824215 [No Abstract] [Full Text] [Related]
20. Ruminal biohydrogenation as affected by tannins in vitro. Vasta V; Makkar HP; Mele M; Priolo A Br J Nutr; 2009 Jul; 102(1):82-92. PubMed ID: 19063768 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]