These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 4370280)

  • 21. Repetitive stimulation induced potentiation of excitatory transmission in the rat dorsal horn: an in vitro study.
    Jeftinija S; Urban L
    J Neurophysiol; 1994 Jan; 71(1):216-28. PubMed ID: 7908954
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rate of rise of the cumulative depolarization evoked by repetitive stimulation of small-caliber afferents is a predictor of action potential windup in rat spinal neurons in vitro.
    Sivilotti LG; Thompson SW; Woolf CJ
    J Neurophysiol; 1993 May; 69(5):1621-31. PubMed ID: 8389833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The retrograde spread of synaptic potentials and recruitment of presynaptic inputs.
    Antonsen BL; Herberholz J; Edwards DH
    J Neurosci; 2005 Mar; 25(12):3086-94. PubMed ID: 15788765
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tachykinin-mediated modulation of sensory neurons, interneurons, and synaptic transmission in the lamprey spinal cord.
    Parker D; Grillner S
    J Neurophysiol; 1996 Dec; 76(6):4031-9. PubMed ID: 8985898
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibitory processes and interneuronal apparatus in motor cortex during sleep and waking. II. Recurrent and afferent inhibition of pyramidal tract neurons.
    Steriade M; Deschênes M
    J Neurophysiol; 1974 Sep; 37(5):1093-113. PubMed ID: 4370113
    [No Abstract]   [Full Text] [Related]  

  • 26. [Transmission by certain groups of spinal interneurons of the descending activity evoked by prolonged stimulation of the pyramides and red nucleus].
    Kostiukov AI
    Neirofiziologiia; 1973; 5(6):644-53. PubMed ID: 4362301
    [No Abstract]   [Full Text] [Related]  

  • 27. Recurrent control from motor axon collaterals of Ia inhibitory pathways in the spinal cord of the cat.
    Lindström S
    Acta Physiol Scand Suppl; 1973; 392():1-43. PubMed ID: 4356646
    [No Abstract]   [Full Text] [Related]  

  • 28. Spinal interneurons responding to group II muscle afferent fibers in the cat.
    Fukushima K; Kato M
    Brain Res; 1975 Jun; 90(2):307-12. PubMed ID: 124618
    [No Abstract]   [Full Text] [Related]  

  • 29. Properties and distribution of peripherally evoked presynaptic hyperpolarization in cat lumbar spinal cord.
    Mendell L
    J Physiol; 1972 Nov; 226(3):769-92. PubMed ID: 4637629
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lateral line input to the crista cerebellaris in the eel. Field potentials and histology.
    Alnaes E
    Acta Physiol Scand; 1973 May; 88(1):49-61. PubMed ID: 4356376
    [No Abstract]   [Full Text] [Related]  

  • 31. Intracellular analysis of unit responses to afferent stimulation in the general and hippocampal cortex of turtles.
    Pivovarov AS; Trepakov VV
    Neurosci Behav Physiol; 1973; 6(2):144-50. PubMed ID: 4744133
    [No Abstract]   [Full Text] [Related]  

  • 32. Integration of directional mechanosensory input by crayfish interneurons.
    Wiese K; Calabrese RL; Kennedy D
    J Neurophysiol; 1976 Jul; 39(4):834-43. PubMed ID: 966041
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crayfish antennal neuropil. I. Reciprocal synaptic interactions and input-output characteristics of first-order interneurons.
    Glantz RM
    J Neurophysiol; 1978 Sep; 41(5):1297-1313. PubMed ID: 212539
    [No Abstract]   [Full Text] [Related]  

  • 34. [Spinal cord interneurons receiving afferent input from ventral roots].
    Tleulin SZh; Kleĭnbok IIa; Doronin VN
    Neirofiziologiia; 1982; 14(5):537-9. PubMed ID: 7144981
    [No Abstract]   [Full Text] [Related]  

  • 35. Functional properties and axon terminations of interneurons in laminae III-V of the mammalian spinal dorsal horn in vitro.
    Schneider SP
    J Neurophysiol; 1992 Nov; 68(5):1746-59. PubMed ID: 1282540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Primary afferents evoke excitatory amino acid receptor-mediated EPSPs that are modulated by presynaptic GABAB receptors in lamprey.
    Christenson J; Grillner S
    J Neurophysiol; 1991 Dec; 66(6):2141-9. PubMed ID: 1687474
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cholinergic transmission at the first synapse of the circuit mediating the crayfish lateral giant escape reaction.
    Miller MW; Vu ET; Krasne FB
    J Neurophysiol; 1992 Dec; 68(6):2174-84. PubMed ID: 1337103
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Influence of vestibular and afferent impulses on the spontaneous activity of interneurons in the spinal cord of cats].
    Truzhennikov AN
    Fiziol Zh SSSR Im I M Sechenova; 1975 Jun; 61(6):945-52. PubMed ID: 1079495
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cooperativity-dependent long-lasting potentiation in the crayfish lateral giant escape reaction circuit.
    Miller MW; Lee SC; Krasne FB
    J Neurosci; 1987 Apr; 7(4):1081-92. PubMed ID: 3572475
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of GABA in primary afferent depolarization.
    Levy RA
    Prog Neurobiol; 1977; 9(4):211-67. PubMed ID: 205909
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.