These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 4370436)
21. Microsomal electron transport. The role of reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase in liver microsomal lipid peroxidation. Pederson TC; Buege JA; Aust SD J Biol Chem; 1973 Oct; 248(20):7134-41. PubMed ID: 4200585 [No Abstract] [Full Text] [Related]
22. Binding of homogeneous cytochrome b5 to rat liver microsomes. Effect on N-demethylation reactions. Cinti DL; Ozols J Biochim Biophys Acta; 1975 Nov; 410(1):32-44. PubMed ID: 1191670 [TBL] [Abstract][Full Text] [Related]
23. Electron transport components of hepatic microsomes. Solubilization, resolution, and recombination to reconstitute aniline hydroxylase activity. Fujita T; Mannering GJ J Biol Chem; 1973 Dec; 248(23):8150-6. PubMed ID: 4148101 [No Abstract] [Full Text] [Related]
24. Transient kinetics of intracomplex electron transfer in the human cytochrome b5 reductase-cytochrome b5 system: NAD+ modulates protein-protein binding and electron transfer. Meyer TE; Shirabe K; Yubisui T; Takeshita M; Bes MT; Cusanovich MA; Tollin G Arch Biochem Biophys; 1995 Apr; 318(2):457-64. PubMed ID: 7733677 [TBL] [Abstract][Full Text] [Related]
25. Role of cytochrome b5 in NADPH-and NADH-dependent hydroxylation by the reconstituted cytochrome P-450- or P-448-containing system. Lu AY; Levin W; West SB; Vore M; Ryan D; Kuntzman R; Conney AH Adv Exp Med Biol; 1975; 58(00):447-66. PubMed ID: 239545 [No Abstract] [Full Text] [Related]
26. Further studies on the in vivo effect of diisopropyl 1,3-dithiol-2-ylidenemalonate (NKK-105) on the liver microsomal drug oxidation system in rats. Katoh M; Kitada M; Satoh T; Kitagawa H; Sugimoto T; Kasai T Biochem Pharmacol; 1981 Oct; 30(20):2759-65. PubMed ID: 6119083 [No Abstract] [Full Text] [Related]
27. The mechanism of cytochrome b5 reduction by NADPH-cytochrome c reductase. Prough RA; Masters BS Arch Biochem Biophys; 1974 Nov; 165(1):263-7. PubMed ID: 4155267 [No Abstract] [Full Text] [Related]
28. Evidence obtained by cathepsin digestion of microsomes for the assembly of cytochrome b5 and its reductase in the membrane. Ito A J Biochem; 1974 Apr; 75(4):787-93. PubMed ID: 4152579 [No Abstract] [Full Text] [Related]
29. Properties of partially purified liver microsomal cytochrome P-450: acceptance of two electrons during anaerobic titration. Ballou DP; Veeger C; van der Hoeven TA; Coon MJ FEBS Lett; 1974 Jan; 38(3):337-40. PubMed ID: 4369075 [No Abstract] [Full Text] [Related]
30. Redox properties of microsomal reduced nicotinamide adenine dinucleotide-cytochrome b5 reductase and cytochrome b5. Iyanagi T Biochemistry; 1977 Jun; 16(12):2725-30. PubMed ID: 19038 [TBL] [Abstract][Full Text] [Related]
31. Mechanism of C-5 double bond introduction in the biosynthesis of cholesterol by rat liver microsomes. Reddy VV; Kupfer D; Caspi E J Biol Chem; 1977 May; 252(9):2797-801. PubMed ID: 192722 [TBL] [Abstract][Full Text] [Related]
32. Immunochemical evidence for the participation of cytochrome b5 in microsomal stearyl-CoA desaturation reaction. Oshino N; Omura T Arch Biochem Biophys; 1973 Aug; 157(2):395-404. PubMed ID: 4147187 [No Abstract] [Full Text] [Related]
33. The binding of cytochrome b5 to plasma membranes of rat liver: its implication for membrane specificity and biogenesis. Remacle J Biochim Biophys Acta; 1980 Apr; 597(3):564-76. PubMed ID: 7378403 [TBL] [Abstract][Full Text] [Related]
34. [Carrier-bound cytochrome b5 as substrate for the ascorbate: ferricytochrome-b5-oxidoreductase from mammalian liver microsomes (author's transl)]. Scherer G; Weber H; Weis W Hoppe Seylers Z Physiol Chem; 1974 Nov; 355(11):1350-4. PubMed ID: 4461638 [No Abstract] [Full Text] [Related]
35. Nitroreduction of 5-nitrofuran derivatives by rat liver xanthine oxidase and reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase. Wang CY; Behrens BC; Ichikawa M; Bryan GT Biochem Pharmacol; 1974 Dec; 23(24):3395-404. PubMed ID: 4155308 [No Abstract] [Full Text] [Related]
36. Effect of chronic exposure to carbon disulphide upon some components of the electron transport system in rat liver microsomes. Sokal JA Biochem Pharmacol; 1973 Jan; 22(1):129-32. PubMed ID: 4148685 [No Abstract] [Full Text] [Related]
37. Purification and properties of the intact form of NADH-cytochrome b5 reductase from rabbit liver microsomes. Mihara K; Sato R J Biochem; 1975 Nov; 78(5):1057-73. PubMed ID: 175049 [TBL] [Abstract][Full Text] [Related]
38. The possible involvement of cytochrome b5 in the oxidation of lauric acid by microsomes from kidney cortex and liver of rats. Sasame HA; Thorgeirsson SS; Mitchell JR; Gillette JR Life Sci; 1974 Jan; 14(1):35-46. PubMed ID: 4129689 [No Abstract] [Full Text] [Related]
39. Simultaneous purification and characterization of cytochrome b5 reductase and cytochrome b5 from sheep liver. Arinç E; Cakir D Int J Biochem Cell Biol; 1999 Feb; 31(2):345-62. PubMed ID: 10216966 [TBL] [Abstract][Full Text] [Related]
40. Roles of cytochrome b5 in the oxidation of testosterone and nifedipine by recombinant cytochrome P450 3A4 and by human liver microsomes. Yamazaki H; Nakano M; Imai Y; Ueng YF; Guengerich FP; Shimada T Arch Biochem Biophys; 1996 Jan; 325(2):174-82. PubMed ID: 8561495 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]