BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 4370921)

  • 1. Evidence for the existence of a fully reduced state of molybdoferredoxin during the functioning of nitrogenase, and the order of electron transfer from reduced ferredoxin.
    Walker MN; Mortenson LE
    J Biol Chem; 1974 Oct; 249(19):6356-8. PubMed ID: 4370921
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of magnesium adenosine 5'-triphosphate on the accessibility of the iron of clostridial azoferredoxin, a component of nitrogenase.
    Walker GA; Mortenson LE
    Biochemistry; 1974 May; 13(11):2382-8. PubMed ID: 4364777
    [No Abstract]   [Full Text] [Related]  

  • 3. Electron-paramagnetic-resonance studies on nitrogenase. Investigation of the oxidation-reduction behaviour of azoferredoxin and molybdoferredoxin with potentiometric and rapid-freeze techniques.
    Zumft WG; Mortenson LE; Palmer G
    Eur J Biochem; 1974 Aug; 46(3):525-35. PubMed ID: 4368670
    [No Abstract]   [Full Text] [Related]  

  • 4. Evidence for electron transfer from the nitrogenase iron protein to the molybdenum-iron protein without MgATP hydrolysis: characterization of a tight protein-protein complex.
    Lanzilotta WN; Fisher K; Seefeldt LC
    Biochemistry; 1996 Jun; 35(22):7188-96. PubMed ID: 8679547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation reduction properties of nitrogenase from Clostridium pasteurianum W5.
    Walker M; Mortenson LE
    Biochem Biophys Res Commun; 1973 Sep; 54(2):669-76. PubMed ID: 4756793
    [No Abstract]   [Full Text] [Related]  

  • 6. Nitrogenase.
    Eady RR; Postgate JR
    Nature; 1974 Jun; 249(460):805-10. PubMed ID: 4134899
    [No Abstract]   [Full Text] [Related]  

  • 7. Nitrogenase of Klebsiella pneumoniae. Kinetics of the dissociation of oxidized iron protein from molybdenum-iron protein: identification of the rate-limiting step for substrate reduction.
    Thorneley RN; Lowe DJ
    Biochem J; 1983 Nov; 215(2):393-403. PubMed ID: 6316927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron paramagnetic resonance of nitrogenase and nitrogenase components from Clostridium pasteurianum W5 and Azotobacter vinelandii OP.
    Orme-Johnson WH; Hamilton WD; Jones TL; Tso MY; Burris RH; Shah VK; Brill WJ
    Proc Natl Acad Sci U S A; 1972 Nov; 69(11):3142-5. PubMed ID: 4343957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron transfer from the nitrogenase iron protein to the [8Fe-(7/8)S] clusters of the molybdenum-iron protein.
    Lanzilotta WN; Seefeldt LC
    Biochemistry; 1996 Dec; 35(51):16770-6. PubMed ID: 8988014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogenase IX. Effect of the MgATP generator on the catalytic and EPR properties of the enzyme in vitro.
    Davis LC; Orhme-Johnson WH
    Biochim Biophys Acta; 1976 Nov; 452(1):42-58. PubMed ID: 186124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron-transfer studies involving flavodoxin and a natural redox partner, the iron protein of nitrogenase. Conformational constraints on protein-protein interactions and the kinetics of electron transfer within the protein complex.
    Thorneley RN; Deistung J
    Biochem J; 1988 Jul; 253(2):587-95. PubMed ID: 3140782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence on intramolecular electron transfer in the MoFe protein of nitrogenase from Klebsiella pneumoniae from rapid-freeze electron-paramagnetic-resonance studies of its oxidation by ferricyanide.
    Smith BE; Lowe DJ; Chen GX; O'Donnell MJ; Hawkes TR
    Biochem J; 1983 Jan; 209(1):207-13. PubMed ID: 6303301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of reductant in inorganic phosphate release from adenosine 5'-triphosphate by purified nitrogenase of Clostridium pasteurianum.
    Jeng DY; Morris JA; Mortenson LE
    J Biol Chem; 1970 Jun; 245(11):2809-13. PubMed ID: 5423376
    [No Abstract]   [Full Text] [Related]  

  • 14. The electron transport to nitrogenase in Mycobacterium flavum.
    Bothe H; Yates MG
    Arch Microbiol; 1976 Feb; 107(1):25-31. PubMed ID: 1252086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in the midpoint potentials of the nitrogenase metal centers as a result of iron protein-molybdenum-iron protein complex formation.
    Lanzilotta WN; Seefeldt LC
    Biochemistry; 1997 Oct; 36(42):12976-83. PubMed ID: 9335558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorine-19 chemical shifts as probes of the structure and reactivity of the iron-molybdenum cofactor of nitrogenase.
    Conradson SD; Burgess BK; Holm RH
    J Biol Chem; 1988 Sep; 263(27):13743-9. PubMed ID: 2843534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron paramagnetic resonance studies on nitrogenase. 3. Function of magnesium adenosine 5'-triphosphate and adenosine 5'-diphosphate in catalysis by nitrogenase.
    Mortenson LE; Zumpft WG; Palmer G
    Biochim Biophys Acta; 1973 Feb; 292(2):422-35. PubMed ID: 4349920
    [No Abstract]   [Full Text] [Related]  

  • 18. The nitrogen-fixing complex of bacteria.
    Zumft WG; Mortenson LE
    Biochim Biophys Acta; 1975 Mar; 416(1):1-52. PubMed ID: 164247
    [No Abstract]   [Full Text] [Related]  

  • 19. Evidence that MgATP accelerates primary electron transfer in a Clostridium pasteurianum Fe protein-Azotobacter vinelandii MoFe protein nitrogenase tight complex.
    Chan JM; Ryle MJ; Seefeldt LC
    J Biol Chem; 1999 Jun; 274(25):17593-8. PubMed ID: 10364195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the structure and function of nitrogenase from Clostridium pasteurianum W5.
    Zumft WG; Cretney WC; Huang TC; Mortenson LE; Palmer G
    Biochem Biophys Res Commun; 1972 Sep; 48(6):1525-32. PubMed ID: 4342714
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.