BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 437093)

  • 1. Effect of guanyl nucleotides on follitropin-dependent adenylate cyclase in the testis.
    Maghun-Rogister G; Hennen G
    FEBS Lett; 1979 Apr; 100(1):121-4. PubMed ID: 437093
    [No Abstract]   [Full Text] [Related]  

  • 2. Inhibitory effect of guanyl nucleotides toward adenylate cyclase activity of Chinese hamster ovary cell membranes activated in vitro by cholera toxin.
    Evain D; Anderson WB
    J Biol Chem; 1979 Sep; 254(18):8726-9. PubMed ID: 479151
    [No Abstract]   [Full Text] [Related]  

  • 3. Modulation of follicle-stimulating hormone-sensitive rat testicular adenylate cyclase activity by guanyl nucleotides.
    Abou-Issa H; Reichert LE
    Endocrinology; 1979 Jan; 104(1):189-93. PubMed ID: 446346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of basal 6.0 S adenylate cyclase into 7.4 S by guanyl nucleotide treatment of membrane bound enzyme.
    Guillon G; Couraud PO; Roy C
    Biochem Biophys Res Commun; 1979 Apr; 87(3):855-61. PubMed ID: 454432
    [No Abstract]   [Full Text] [Related]  

  • 5. Activation of uterine smooth muscle adenylate cyclase by guanyl nucleotide.
    Krall JF; Leshon SC; Frolich M; Korenman SG
    J Biol Chem; 1981 Jun; 256(11):5436-42. PubMed ID: 7240148
    [No Abstract]   [Full Text] [Related]  

  • 6. Coupling of glucagon receptor to adenylyl cyclase. Requirement of a receptor-related guanyl nucleotide binding site for coupling of receptor to the enzyme.
    Iyengar R; Swartz TL; Birnbaumer L
    J Biol Chem; 1979 Feb; 254(4):1119-23. PubMed ID: 216687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2'-Deoxyadenosine functionally uncouples adenylate cyclase from the guanyl nucleotide subunit without altering simultaneous GppNHp occupancy.
    Tolkovsky AM
    FEBS Lett; 1980 Jul; 116(2):165-8. PubMed ID: 6967829
    [No Abstract]   [Full Text] [Related]  

  • 8. Activation of adenylate cyclase in bovine adrenal cortex membranes by magnesium ions, guanine nucleotides and corticotropin.
    Glynn P; Cooper DM; Schulster D
    Biochim Biophys Acta; 1978 Jun; 524(2):474-83. PubMed ID: 208626
    [No Abstract]   [Full Text] [Related]  

  • 9. The role of calcium in the control of adrenal adenylate cyclase. Enhancement of enzyme activation by guanyl-5'-yl imidodiphosphate.
    Mahaffee DD; Ontjes DA
    J Biol Chem; 1980 Feb; 255(4):1565-71. PubMed ID: 6243642
    [No Abstract]   [Full Text] [Related]  

  • 10. Transient and steady state kinetics of the interaction of guanyl nucleotides with the adenylyl cyclase system from rat liver plasma membranes. Interpretation in terms of a simple two-state model.
    Birnbaumer L; Swartz TL; Abramowitz J; Mintz PW; Iyengar R
    J Biol Chem; 1980 Apr; 255(8):3542-51. PubMed ID: 7364755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulatory and inhibitory effects of guanyl-5'-yl imidodiphosphate on adenylate cyclase activity of cardiac sarcolemma.
    Narayanan N; Sulakhe PV
    Arch Biochem Biophys; 1978 Jan; 185(1):72-81. PubMed ID: 414661
    [No Abstract]   [Full Text] [Related]  

  • 12. Control of bovine adrenocortical adenylate cyclase activity by guanine neucleotides [proceedings].
    Glynn P; Cooper DM; Schulster D
    Biochem Soc Trans; 1977; 5(4):973-5. PubMed ID: 913845
    [No Abstract]   [Full Text] [Related]  

  • 13. Regulation of thyroid adenylate cyclase: guanyl nucleotide modulation of thyrotropin receptor-adenylate cyclase function.
    Saltiel AR; Powell-Jones CH; Thomas CG; Nayfeh SN
    Endocrinology; 1981 Nov; 109(5):1578-89. PubMed ID: 6271536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limited proteolysis eliminates guanine nucleotide inhibition of choleragen-activated adenylate cyclase. Possible basis for proteolytic stimulation of cyclic AMP production.
    Pinkett MO; Jaworski CJ; Evain D; Anderson WB
    J Biol Chem; 1980 Aug; 255(16):7716-21. PubMed ID: 6772639
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects of thiol-protecting reagents on the size of solubilized adenylate cyclase and on its ability to be stimulated by guanyl nucleotides and fluoride.
    Guillon G; Cantau B; Jard S
    Eur J Biochem; 1981 Jul; 117(2):401-6. PubMed ID: 7274217
    [No Abstract]   [Full Text] [Related]  

  • 16. Promotion by Mg2+ of guanosine 5'-(beta, gamma-imido) triphosphate activation of adenylate cyclase in rat lung and heart membranes.
    Chatelain P; Robberecht P; Nguyen Huu A; Christophe J
    FEBS Lett; 1982 May; 141(2):169-72. PubMed ID: 7095147
    [No Abstract]   [Full Text] [Related]  

  • 17. Adenylyl cyclase activity of the fission yeast Schizosaccharomyces pombe is not regulated by guanyl nucleotides.
    Engelberg D; Poradosu E; Simchen G; Levitzki A
    FEBS Lett; 1990 Feb; 261(2):413-8. PubMed ID: 2178979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guanosine 5'-triphosphate and guanosine 5'-[beta gamma-imido]triphosphate effect a collision coupling mechanism between the glucagon receptor and catalytic unit of adenylate cyclase.
    Houslay MD; Dipple I; Elliott KR
    Biochem J; 1980 Mar; 186(3):649-58. PubMed ID: 6249258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adenylate cyclase activation by GTP analogs.
    Krall JF; Korenman SG
    Arch Biochem Biophys; 1982 Feb; 213(2):585-9. PubMed ID: 6280615
    [No Abstract]   [Full Text] [Related]  

  • 20. Multiphasic activation of smooth muscle adenylate cyclase by pretreatment with guanyl-5'-yl imidodiphosphate (Gpp(NH)p) suggests multiple enzyme populations.
    Frolich M; Krall JF; Stahl RE; Korenman SG
    Arch Biochem Biophys; 1982 Sep; 217(2):473-8. PubMed ID: 7138018
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.