BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 4371336)

  • 1. Amino acid transport and staphylococcal membrane vesicles.
    Short SA; Kaback HR
    Ann N Y Acad Sci; 1974 Jul; 236(0):124-43. PubMed ID: 4371336
    [No Abstract]   [Full Text] [Related]  

  • 2. Mechanisms of active transport in isolated bacterial membrane vesicles. Further studies on amino acid transport in Staphylococcus aureus membrane vesicles.
    Short SA; Kaback HR
    J Biol Chem; 1974 Jul; 249(13):4275-81. PubMed ID: 4853134
    [No Abstract]   [Full Text] [Related]  

  • 3. Active transport of amino acids by membrane vesicles of Thiobacillus neapolitanus.
    Matin A; Konings WN; Kuenen JG; Emmens M
    J Gen Microbiol; 1974 Aug; 83(2):311-8. PubMed ID: 4372294
    [No Abstract]   [Full Text] [Related]  

  • 4. Active transport in isolated bacterial membrane vesicles. V. The transport of amino acids by membrane vesicles prepared from Staphylococcus aureus.
    Short SA; White DC; Kaback HR
    J Biol Chem; 1972 Jan; 247(1):298-304. PubMed ID: 4553437
    [No Abstract]   [Full Text] [Related]  

  • 5. Mechanisms of active transport in isolated membrane vesicles. II. The mechanism of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in membrane preparations from Escherichia coli.
    Kaback HR; Barnes EM
    J Biol Chem; 1971 Sep; 246(17):5523-31. PubMed ID: 4941946
    [No Abstract]   [Full Text] [Related]  

  • 6. A spin-label study of energy-coupled active transport in Escherichia coli membrane vesicles.
    Baldassare JJ; Robertson DE; McAfee AG; Ho C
    Biochemistry; 1974 Dec; 13(25):5210-4. PubMed ID: 4373033
    [No Abstract]   [Full Text] [Related]  

  • 7. Properties of the membrane-bound respiratory chain system of Halobacterium salinarium.
    Cheah KS
    Biochim Biophys Acta; 1970 Aug; 216(1):43-53. PubMed ID: 4993244
    [No Abstract]   [Full Text] [Related]  

  • 8. Mechanisms of active transport in isolated membrane vesicles. 2. The coupling of reduced phenazine methosulfate to the concentrative uptake of beta-galactosides and amino acids.
    Konings WN; Barnes EM; Kaback HR
    J Biol Chem; 1971 Oct; 246(19):5857-61. PubMed ID: 4331061
    [No Abstract]   [Full Text] [Related]  

  • 9. Amino acid transport in membrane vesicles of Bacillus subtilis.
    Konings WN; Freese E
    J Biol Chem; 1972 Apr; 247(8):2408-18. PubMed ID: 4401701
    [No Abstract]   [Full Text] [Related]  

  • 10. Amino acid transport in membrane vesicles of obligately anaerobic Veillonella alcalescens.
    Konings WN; Boonstra J; De Vries W
    J Bacteriol; 1975 Apr; 122(1):245-9. PubMed ID: 164433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient pH changes during D-lactate oxidation by membrane vesicles.
    Reeves JP
    Biochem Biophys Res Commun; 1971 Nov; 45(4):931-6. PubMed ID: 4330145
    [No Abstract]   [Full Text] [Related]  

  • 12. Relationship between amino acid transport and electron transport by membrane vesicles of Micrococcus denitrificans.
    White DC; Tucker AN; Kaback HR
    Arch Biochem Biophys; 1974 Dec; 165(2):672-80. PubMed ID: 4441098
    [No Abstract]   [Full Text] [Related]  

  • 13. Reconstitution of D-lactate-dependent transport in membrane vesicles from a D-lactate dehydrogenase mutant of Escherichia coli.
    Reeves JP; Hong JS; Kaback HR
    Proc Natl Acad Sci U S A; 1973 Jul; 70(7):1917-21. PubMed ID: 4579004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Respiratory activities associated with mesosomal vesicles and protoplast membranes of Staphylococcus aureus.
    Theodore TS; Weinbach EC
    J Bacteriol; 1974 Oct; 120(1):562-4. PubMed ID: 4371152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the electron transport system in Brucella abortus.
    Rest RF; Robertson DC
    J Bacteriol; 1975 Apr; 122(1):139-44. PubMed ID: 235507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncoupling action of amytal in membrane vesicles from Escherichia coli.
    Boonstra J; Ottema S; Sips HJ; Konings WN
    Eur J Biochem; 1979 Dec; 102(2):383-8. PubMed ID: 393507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of sulfhydryl inhibitors on substrate oxidation and proline transport with membrane preparations from Mycobacterium phlei.
    Kosmakos FC; Brodie AF
    J Biol Chem; 1974 Nov; 249(21):6956-64. PubMed ID: 4370899
    [No Abstract]   [Full Text] [Related]  

  • 18. Mechanisms of active transport in isolated bacterial membrane vesicles. IX. The kinetics and specificity of amino acid transport in Staphylococcus aureus membrane vesicles.
    Short SA; White DC; Kaback HR
    J Biol Chem; 1972 Dec; 247(23):7452-8. PubMed ID: 4636316
    [No Abstract]   [Full Text] [Related]  

  • 19. Reconstitution of transport dependent on D-lactate or glycerol 3-phosphate in membrane vesicles of Escherichia coli deficient in the corresponding dehydrogenases.
    Futai M
    Biochemistry; 1974 May; 13(11):2327-33. PubMed ID: 4598623
    [No Abstract]   [Full Text] [Related]  

  • 20. Mechanisms of active transport in isolated bacterial membrane vesicles. VII. Fluorescence of 1-anilino-8-naphthalenesulfonate during D-lactate oxidation by membrane vesicles from Escherichia coli.
    Reeves JP; Lombardi FJ; Kaback HR
    J Biol Chem; 1972 Oct; 247(19):6204-11. PubMed ID: 4568608
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.