These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 4371361)

  • 21. Effect of sodium fluoride on concentrating and diluting ability in the rat.
    Wallin JD; Kaplan RA
    Am J Physiol; 1977 Apr; 232(4):F335-40. PubMed ID: 192087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of acetazolamide on the urinary excretion of cyclic AMP and on the activity of renal adenyl cyclase.
    Rodriguez HJ; Walls J; Yates J; Klahr S
    J Clin Invest; 1974 Jan; 53(1):122-30. PubMed ID: 4357608
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dissociation between antidiuretic response and renal medullary cyclic AMP levels in the rat.
    Christensen S
    Pflugers Arch; 1978 May; 374(3):229-34. PubMed ID: 209398
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chlorpropamide action on renal concentrating mechanism in rats with hypothalamic diabetes insipidus.
    Kusano E; Braun-Werness JL; Vick DJ; Keller MJ; Dousa TP
    J Clin Invest; 1983 Oct; 72(4):1298-313. PubMed ID: 6313759
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of somatostatin on vasopressin-induced antidiuresis and renal cyclic AMP of rats.
    Winkler SN; Torikai S; Levine BS; Kurokawa K
    Miner Electrolyte Metab; 1982 Jan; 7(1):8-14. PubMed ID: 6133212
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The cyclic AMP system in the inner medullary collecting duct of the potassium-depleted rat.
    Kim JK; Summer SN; Berl T
    Kidney Int; 1984 Oct; 26(4):384-91. PubMed ID: 6098765
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo and in vitro studies of urinary concentrating ability in potassium-depleted rabbits.
    Raymond KH; Davidson KK; McKinney TD
    J Clin Invest; 1985 Aug; 76(2):561-6. PubMed ID: 2993361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A study in vitro of the concentrating defect associated with hypokalaemia and hypercalcaemia.
    Carney S; Rayson B; Morgan T
    Pflugers Arch; 1976 Oct; 366(1):11-7. PubMed ID: 185584
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Renal concentration defect following nonoliguric acute renal failure in the rat.
    Anderson RJ; Gordon JA; Kim J; Peterson LM; Gross PA
    Kidney Int; 1982 Apr; 21(4):583-91. PubMed ID: 6285066
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impaired urinary concentrating ability in genetically polyuric mice.
    Homma S; Takeda S; Kusano E; Matsuo Y; Shimizu T; Nakamura M; Oohara T; Makino S; Asano Y
    Nephron; 2002 Dec; 92(4):889-97. PubMed ID: 12399636
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activation of adenylate cyclase in renal medulla by bovine growth hormone. An artifact attributable to vasopressin.
    Leichter SB; Chase LR
    Biochim Biophys Acta; 1975 Aug; 399(2):291-301. PubMed ID: 1174531
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional profile of the isolated uremic nephron. Impaired water permeability and adenylate cyclase responsiveness of the cortical collecting tubule to vasopressin.
    Fine LG; Schlondorff D; Trizna W; Gilbert RM; Bricker NS
    J Clin Invest; 1978 Jun; 61(6):1519-27. PubMed ID: 207738
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of vasopressin and prostaglandin E 1 on the adenyl cyclase-cyclic 3',5'-adenosine monophosphate system of the renal medulla of the rat.
    Beck NP; Kaneko T; Zor U; Field JB; Davis BB
    J Clin Invest; 1971 Dec; 50(12):2461-5. PubMed ID: 4331595
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of protein kinase by vasopressin in renal medulla in situ.
    Dousa TP; Barnes LD
    Am J Physiol; 1977 Jan; 232(1):F50-7. PubMed ID: 189620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The cAMP system in vasopressin-sensitive nephron segments of the vitamin D-treated rat.
    Berl T
    Kidney Int; 1987 May; 31(5):1065-71. PubMed ID: 3037155
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of salt loading in the rat on adenylate cyclase and phosphodiesterase activity in kidney cortex, medulla and papilla.
    Wald H; Gutman Y; Czaczkes W
    Enzyme; 1977; 22(5):336-40. PubMed ID: 196846
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Renal medullary adenylate cyclase in rats with hypothalamic diabetes insipidus.
    Dousa TP; Hui YF; Barnes LD
    Endocrinology; 1975 Oct; 97(4):802-7. PubMed ID: 172317
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of cyclic AMP metabolism in rat liver. A correlative study of tissue levels of cyclic AMP, accumulation of cyclic AMP in slices, adenylate cyclase activity and cyclic nucleotide phosphodiesterase activity.
    Christoffersen T; Morland J; Osnes JB; Oye I
    Biochim Biophys Acta; 1973 Jul; 313(2):338-49. PubMed ID: 4354955
    [No Abstract]   [Full Text] [Related]  

  • 39. Modulation of the cyclic AMP content of rat renal inner medulla by oxygen: possible role of local prostaglandins.
    DeRubertis FR; Zenser TV; Craven PA; Davis BB
    J Clin Invest; 1976 Dec; 58(6):1370-8. PubMed ID: 186490
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hypercalcemia reduces renal medullary content of organic osmolytes.
    Nakahama H; Nakanishi T; Sugita M
    Ren Fail; 1996 Mar; 18(2):241-6. PubMed ID: 8723361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.