These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 4371564)

  • 1. The role of the polyol pathway in methaemoglobin reduction in human red cells.
    Travis SF; Morrison AD; Clements RS; Winegrad AI; Oski FA
    Br J Haematol; 1974 Aug; 27(4):597-605. PubMed ID: 4371564
    [No Abstract]   [Full Text] [Related]  

  • 2. Role of inosine in prevention of methaemoglobinaemia in the pig: in vitro studies.
    Sartorelli P; Paltrinieri S; Agnes F; Baglioni T
    Zentralbl Veterinarmed A; 1996 Oct; 43(8):489-93. PubMed ID: 8940895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose utilization by the polyol pathway in human erythrocytes.
    Morrison AD; Clements RS; Travis SB; Oski F; Winegrad AI
    Biochem Biophys Res Commun; 1970 Jul; 40(1):199-205. PubMed ID: 5456956
    [No Abstract]   [Full Text] [Related]  

  • 4. Comparative carbohydrate catabolism and methemoglobin reduction in pig and human erythrocytes.
    Rivkin SE; Simon ER
    J Cell Physiol; 1965 Aug; 66(1):49-56. PubMed ID: 4379217
    [No Abstract]   [Full Text] [Related]  

  • 5. Catalysis of methaemoglobin reduction by erythrocyte cytochrome B5 and cytochrome B5 reductase.
    Hultquist DE; Passon PG
    Nat New Biol; 1971 Feb; 229(8):252-4. PubMed ID: 4324110
    [No Abstract]   [Full Text] [Related]  

  • 6. Acceleration of methaemoglobin reduction by riboflavin in human erythrocytes.
    Matsuki T; Yubisui T; Tomoda A; Yoneyama Y; Takeshita M; Hirano M; Kobayashi K; Tani Y
    Br J Haematol; 1978 Aug; 39(4):523-8. PubMed ID: 698125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic alterations in the human erythrocyte produced by increases in glucose concentration. The role of the polyol pathway.
    Travis SF; Morrison AD; Clements RS; Winegrad AI; Oski FA
    J Clin Invest; 1971 Oct; 50(10):2104-12. PubMed ID: 4398937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the energy metabolism of opossum Didelphis virginiana erythrocytes--III. Metabolic depletion with 2-deoxyglucose markedly accelerates methemoglobin reduction in opossum but not in human erythrocytes.
    Bethlenfalvay NC; Lima JE; Chadwick E; Stewart I
    Comp Biochem Physiol A Comp Physiol; 1988; 89(2):119-24. PubMed ID: 2896090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A NOTE ON THE METHEMOGLOBIN REDUCTASE ACTIVITY OF RABBIT ERYTHROCYTES.
    BIDE RW; COLLIER HB
    Can J Biochem; 1964 May; 42():669-73. PubMed ID: 14185733
    [No Abstract]   [Full Text] [Related]  

  • 10. The relationship of NADH-dependent diaphorase activity and methemoglobin reduction in human erythrocytes.
    Kanazawa Y; Hattori M; Kosaka K; Nakao K
    Clin Chim Acta; 1968 Mar; 19(3):524-6. PubMed ID: 4296126
    [No Abstract]   [Full Text] [Related]  

  • 11. Hereditary methemoglobinemia, toxic methemoglobinemia and the reduction of methemoglobin.
    Jaffé ER; Neumann G
    Ann N Y Acad Sci; 1968 Jul; 151(2):795-806. PubMed ID: 4313162
    [No Abstract]   [Full Text] [Related]  

  • 12. Reduction of methemoglobin in human adult and cord blood erythrocytes incubated with glucose or inosine.
    Lee WM; Bragg FE; Jaffé ER
    Proc Soc Exp Biol Med; 1967 Jan; 124(1):214-6. PubMed ID: 6017769
    [No Abstract]   [Full Text] [Related]  

  • 13. [Study in vitro of effects of nitric oxide and carbon monoxide on human and rabbit blood (author's transl)].
    Bompart G; Bourbon P; Levy P
    Toxicol Eur Res; 1978; 1(5):295-302. PubMed ID: 552170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The glucose metabolism in erythrocytes during the methemoglobin formation through phenylhydroxylamine].
    Wagner J; Burger A; Uehleke H; Götz E
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1968; 89(4):536-48. PubMed ID: 4176856
    [No Abstract]   [Full Text] [Related]  

  • 15. The stimulus-secretion coupling of glucose-induced insulin release. Sorbitol metabolism in isolated islets.
    Malaisse WJ; Sener A; Mahy M
    Eur J Biochem; 1974 Sep; 47(2):365-70. PubMed ID: 4607256
    [No Abstract]   [Full Text] [Related]  

  • 16. Presence of the complete sorbitol pathway in the human normal umbilical cord tissue.
    Brachet EA
    Biol Neonate; 1973; 23(3):314-23. PubMed ID: 4149330
    [No Abstract]   [Full Text] [Related]  

  • 17. [Hereditary methemoglobinemia with mental and growth retardation found in a Japanese boy. With special reference to xylitol, sorbitol metabolism and methemoglobin reduction in the erythrocyte].
    Nishina T; Miwa S; Hara N; Asakura T
    Nihon Ketsueki Gakkai Zasshi; 1970 Aug; 33(4):455-61. PubMed ID: 5534618
    [No Abstract]   [Full Text] [Related]  

  • 18. Investigation of methaemoglobin reduction by extracellular NADH in mammalian erythrocytes.
    Kennett EC; Ogawa E; Agar NS; Godwin IR; Bubb WA; Kuchel PW
    Int J Biochem Cell Biol; 2005 Jul; 37(7):1438-45. PubMed ID: 15833275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of dapsone hydroxylamine to dapsone during methaemoglobin formation in human erythrocytes in vitro.
    Coleman MD; Jacobus DP
    Biochem Pharmacol; 1993 Mar; 45(5):1027-33. PubMed ID: 8461032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of methaemoglobin reduction by human erythrocytes.
    Tomoda A; Ida M; Tsuji A; Yoneyama Y
    Biochem J; 1980 May; 188(2):535-40. PubMed ID: 7396878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.