BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 4371669)

  • 1. Relative dependence on intracellular cyclic adenosine-3',5'-monophosphate levels of catabolite repressible proteins in Escherichia coli.
    Piovant M; Lazdunski C; Cailla H
    FEBS Lett; 1974 Sep; 46(1):281-4. PubMed ID: 4371669
    [No Abstract]   [Full Text] [Related]  

  • 2. On the control mechanism of bacterial growth by cyclic adenosine 3',5'-monophosphate.
    De Robertis EM; Judewicz RD; Torres HN
    Biochem Biophys Res Commun; 1973 Dec; 55(3):758-64. PubMed ID: 4357431
    [No Abstract]   [Full Text] [Related]  

  • 3. Control of uracil transport by cyclic AMP in E. coli.
    Judewicz ND; De Robertis EM; Torres HN
    FEBS Lett; 1974 Sep; 45(1):155-8. PubMed ID: 4369888
    [No Abstract]   [Full Text] [Related]  

  • 4. On the relationship between cell division and cyclic adenosine-3',5'-monophosphate in Escherichia coli.
    Piovant M; Lazdunski C; Cailla H
    FEBS Lett; 1974 Sep; 46(1):42-4. PubMed ID: 4371038
    [No Abstract]   [Full Text] [Related]  

  • 5. The effect of catabolite repression and of cyclic 3',5' adenosine monophosphate on the translation of the lactose messenger RNA in Escherichia coli.
    Aboud M; Burger M
    Biochem Biophys Res Commun; 1970 Mar; 38(6):1023-32. PubMed ID: 4314388
    [No Abstract]   [Full Text] [Related]  

  • 6. Use of streptomycin and cyclic adenosine 5'-monophosphate in the isolation of mutants deficient in CAP protein.
    Artman M; Werthamer S
    J Bacteriol; 1974 Oct; 120(1):542-4. PubMed ID: 4371357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ribosomal and soluble protein synthesis during a nutritional shift-up. Influence of cyclic AMP on beta-galactosidase activity.
    Carpenter G; Sells BH
    Biochim Biophys Acta; 1972 Dec; 287(2):322-9. PubMed ID: 4371824
    [No Abstract]   [Full Text] [Related]  

  • 8. A differential effect of adenosine 3', 5'-cyclic monophosphate on the synthesis of functional enzymes from two different cistrons of the LAC operon.
    Simon M; Apirion D
    Biochem Biophys Res Commun; 1972 Sep; 48(5):1166-72. PubMed ID: 4341051
    [No Abstract]   [Full Text] [Related]  

  • 9. Control of protein synthesis of Escherichia coli. I. Translation and functional inactivation of messenger ribonucleic acid after energy source shift-down.
    Westover KC; Jacobson LA
    J Biol Chem; 1974 Oct; 249(19):6272-9. PubMed ID: 4609047
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of glucagon on protein and RNA synthesis by spheroplasts of Escherichia coli.
    Candela JL; Nieto A
    Nat New Biol; 1972 May; 237(72):85-7. PubMed ID: 4338245
    [No Abstract]   [Full Text] [Related]  

  • 11. Regulation of inducible enzyme synthesis in Escherichia coli by cyclic adenosine 3', 5'-monophosphate.
    De Crombrugghe B; Perlman RL; Varmus HE; Pastan I
    J Biol Chem; 1969 Nov; 244(21):5828-35. PubMed ID: 4310825
    [No Abstract]   [Full Text] [Related]  

  • 12. Cyclic 3';5' adenosine monophosphate-phosphodiesterase and the release of catabolite repression of beta-galactosidase by exogenous cyclic 3';5' adenosine monophosphate in Escherichia coli.
    Aboud M; Burger M
    Biochem Biophys Res Commun; 1971 Apr; 43(1):174-82. PubMed ID: 4325494
    [No Abstract]   [Full Text] [Related]  

  • 13. Early effects of Bdellovibrio infection on the syntheses of protein and RNA of host bacteria.
    Varon M; Drucker I; Shilo M
    Biochem Biophys Res Commun; 1969 Oct; 37(3):518-25. PubMed ID: 4900142
    [No Abstract]   [Full Text] [Related]  

  • 14. Different cyclic adenosine 3',5'-monophosphate requirements for induction of beta-galactosidase and tryptophanase. Effect of osmotic pressure on intracellular cyclic adenosine 3,5-monophosphate concentrations.
    Piovant M; Lazdunski C
    Biochemistry; 1975 May; 14(9):1821-5. PubMed ID: 164897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theophylline inhibits the transcription of the lac operon in Escherichia coli.
    Schlammadinger J; Szabó G; Pólya L
    Acta Microbiol Acad Sci Hung; 1972; 19(1):43-50. PubMed ID: 4346731
    [No Abstract]   [Full Text] [Related]  

  • 16. On the control of the induction of -galactosidase in synchronous cultures of Escherichia coli.
    Goldberg RB; Chargaff E
    Proc Natl Acad Sci U S A; 1971 Aug; 68(8):1702-6. PubMed ID: 4942912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenosine triphosphate and catabolite repression of -galactosidase in escherichia coli.
    Aboud M; Burger M
    Biochem Biophys Res Commun; 1971 Oct; 45(1):190-7. PubMed ID: 4334523
    [No Abstract]   [Full Text] [Related]  

  • 18. Regulation of uracil uptake in Escherichia coli by adenosine 3',5'-monophosphate.
    De Robertis EM; Judewicz ND; Torres HN
    Biochim Biophys Acta; 1976 Mar; 426(3):451-63. PubMed ID: 178363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic adenosine 5'-monophosphate in Escherichia coli.
    Pastan I; Adhya S
    Bacteriol Rev; 1976 Sep; 40(3):527-51. PubMed ID: 186018
    [No Abstract]   [Full Text] [Related]  

  • 20. Regulation of beta-galactosidase synthesis in Escherichia coli by cyclic adenosine 3',5'-monophosphate.
    Perlman RL; Pastan I
    J Biol Chem; 1968 Oct; 243(20):5420-7. PubMed ID: 4302785
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.