BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

42 related articles for article (PubMed ID: 4371844)

  • 1. Studies on manganese-substrate complexes of arginine kinase from Panulirus longipes.
    O'Sullivan WJ; Smith E; Chapman BE; Marsden KH
    Biochim Biophys Acta; 1974 Nov; 370(1):153-9. PubMed ID: 4371844
    [No Abstract]   [Full Text] [Related]  

  • 2. Characterization of the active site structures of arginine kinase-substrate complexes. Water proton magnetic relaxation rates and electron paramagnetic resonance spectra of manganous-enzyme complexes with substrates and of a transition state analog.
    Buttlaire DH; Cohn M
    J Biol Chem; 1974 Sep; 249(18):5741-8. PubMed ID: 4369851
    [No Abstract]   [Full Text] [Related]  

  • 3. Two isoenzymes of arginine kinase from Panulirus longipes.
    Mäsiar P; Shaw DC
    Biochim Biophys Acta; 1973 Apr; 303(2):308-18. PubMed ID: 4710235
    [No Abstract]   [Full Text] [Related]  

  • 4. Interaction of manganous ion, substrates, and anions with arginine kinase. Magnetic relaxation rate studies of water protons and kinetic anion effects.
    Buttlaire DH; Cohn M
    J Biol Chem; 1974 Sep; 249(18):5733-40. PubMed ID: 4370118
    [No Abstract]   [Full Text] [Related]  

  • 5. Substrate and metal ion binding to carbamate kinase: NMR and EPR studies.
    Pillai RP; Marshall M; Villafranca JJ
    Arch Biochem Biophys; 1980 Jan; 199(1):21-7. PubMed ID: 6243908
    [No Abstract]   [Full Text] [Related]  

  • 6. Modification of an essential arginine of carbamate kinase.
    Pillai RP; Marshall M; Villafranca JJ
    Arch Biochem Biophys; 1980 Jan; 199(1):16-20. PubMed ID: 6243907
    [No Abstract]   [Full Text] [Related]  

  • 7. Unspecific arginine kinase of molecular weight 150 000. Amino acid composition, subunit structure and number of substrate binding sites.
    Robin Y; Guillou A; Van Thoai N
    Eur J Biochem; 1975 Apr; 52(3):531-7. PubMed ID: 196847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping active sites of phosphoryl-transferring enzymes by magnetic resonance methods.
    Cohn M; Leigh JS; Reed GH
    Cold Spring Harb Symp Quant Biol; 1972; 36():533-40. PubMed ID: 4343722
    [No Abstract]   [Full Text] [Related]  

  • 9. Structural studies of transition state analog complexes of creatine kinase.
    Reed GH; McLaughlin AC
    Ann N Y Acad Sci; 1973 Dec; 222():118-29. PubMed ID: 4361852
    [No Abstract]   [Full Text] [Related]  

  • 10. NMR studies of the nucleotide conformation and the arrangement of substrates and activators on phosphoribosylpyrophosphate synthetase.
    Granot J; Gibson KJ; Switzer RL; Mildvan AS
    J Biol Chem; 1980 Nov; 255(22):10931-7. PubMed ID: 6253492
    [No Abstract]   [Full Text] [Related]  

  • 11. Comparative study of two ATP : L-arginine phosphotransferases of molecular weight 84 000.
    Thiem NV; Lacombe G; Thoai NV
    Biochim Biophys Acta; 1975 Jan; 377(1):95-102. PubMed ID: 164227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectrophotometric and fluorescence studies of the interaction of adenine nucleotides with arginine kinase of Homarus americanus.
    Lum WS; Wong PW; Yang MS; Buttlaire DH
    J Biol Chem; 1978 Sep; 253(17):6226-32. PubMed ID: 210171
    [No Abstract]   [Full Text] [Related]  

  • 13. Bovine galactosyl transferase. Substrate.managanese complexes and the role of manganese ions in the mechanism.
    Tsopanakis AD; Herries DG
    Eur J Biochem; 1978 Feb; 83(1):179-88. PubMed ID: 203458
    [No Abstract]   [Full Text] [Related]  

  • 14. Characteristic of isoenzymes of pyruvate kinase isolated from some crayfish Orconectes limosus Raf. (Crustacea: Decapoda) tissues.
    Lesicki A
    Comp Biochem Physiol B; 1976; 55(2):273-7. PubMed ID: 963984
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects of anions on a monomeric and a dimeric arginine kinase.
    Anosike EO; Watts DC
    Biochem J; 1975 Aug; 149(2):387-95. PubMed ID: 170913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [ESR study of interaction between adenylate kinase, substrates and Mn2+ ions].
    Kharatian SA; Kaiushin LP
    Biofizika; 1982; 27(1):10-3. PubMed ID: 6279168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 31P nuclear magnetic resonance kinetic measurements on adenylatekinase.
    Brown TR; Ogawa S
    Proc Natl Acad Sci U S A; 1977 Sep; 74(9):3627-31. PubMed ID: 198793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the question of the primary acceptor in bacterial photosynthesis:manganese substituting for iron in reaction centers of Rhodopseudomonas spheroides R-26.
    Feher G; Isaacson RA; McElroy JD; Ackerson LC; Okamura MY
    Biochim Biophys Acta; 1974 Oct; 368(1):135-9. PubMed ID: 4371037
    [No Abstract]   [Full Text] [Related]  

  • 19. Magnetic resonance and kinetic studies on the manganese activated arginine kinase reaction.
    O'Sullivan WJ; Virden R; Blethen S
    Eur J Biochem; 1969 Apr; 8(4):562-70. PubMed ID: 5796143
    [No Abstract]   [Full Text] [Related]  

  • 20. Effects of arginine and some analogues of the partial adenosine triphosphate-adenosine diphosphate exchange reaction catalysed by arginine kinase. Evolutionary divergence in the mechanism of action of a monomer and a dimer arginine kinase.
    Anosike EO; Watts DC
    Biochem J; 1976 Jun; 155(3):689-93. PubMed ID: 182135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.