These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 4371848)

  • 1. Identification of the thiol residues involved in modifications of pig heart lipoamide dehydrogenase by cupric ion and by iodoacetamide.
    Matthews RG; Williams CH
    Biochim Biophys Acta; 1974 Nov; 370(1):39-48. PubMed ID: 4371848
    [No Abstract]   [Full Text] [Related]  

  • 2. Isolation, characterization and partial sequencing of cystine and thiol peptides of pig heart lipoamide dehydrogenase.
    Matthews RG; Arscott LD; Williams CH
    Biochim Biophys Acta; 1974 Nov; 370(1):26-38. PubMed ID: 4609485
    [No Abstract]   [Full Text] [Related]  

  • 3. Mercuric reductase: homology to glutathione reductase and lipoamide dehydrogenase. Iodoacetamide alkylation and sequence of the active site peptide.
    Fox BS; Walsh CT
    Biochemistry; 1983 Aug; 22(17):4082-8. PubMed ID: 6412751
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of low concentrations of guanidine hydrochloride on pig heart lipoamide dehydrogenase.
    Thorpe C; Williams CH
    Biochemistry; 1974 Jul; 13(16):3263-8. PubMed ID: 4858227
    [No Abstract]   [Full Text] [Related]  

  • 5. Characterization of porcine malate dehydrogenase. II. Amino acid sequence of a peptide containing the active center histidine residue.
    Foster M; Harrison JH
    Biochim Biophys Acta; 1974 Jun; 351(2):295-300. PubMed ID: 4366371
    [No Abstract]   [Full Text] [Related]  

  • 6. Functional significance and location of cysteine residues in the molecule of aspartate aminotransferase.
    Nosikov VV; Grishin EV; Deev SM; Polyanovskii OL; Braunshtein AE; Ovchinnikov YuA
    Mol Biol; 1974 Nov; 8(3):326-33. PubMed ID: 4437529
    [No Abstract]   [Full Text] [Related]  

  • 7. Nitroreductase activity of heart lipoamide dehydrogenase.
    Tsai CS
    Biochem J; 1987 Mar; 242(2):447-52. PubMed ID: 3593260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional groups of diphosphopyridine nucleotide-linked isocitrate dehydrogenase from bovine heart. Studies of cysteine residues.
    Fan CC; Plaut GW
    J Biol Chem; 1974 Aug; 249(15):4839-45. PubMed ID: 4367808
    [No Abstract]   [Full Text] [Related]  

  • 9. The modification of functional groups of aspartate-aminotransferase by tetranitromethane.
    Demidkina TV; Bocharov AL; Polyanovskii OL; Karpeiskii MY
    Mol Biol; 1973; 7(3):372-80. PubMed ID: 4797885
    [No Abstract]   [Full Text] [Related]  

  • 10. Evidence for a methionyl residue in the active site of the cytoplasmic malate dehydrogenase from pig heart.
    Leskovac V; Pfleiderer G
    Hoppe Seylers Z Physiol Chem; 1969 Apr; 350(4):484-92. PubMed ID: 4307938
    [No Abstract]   [Full Text] [Related]  

  • 11. Differential reactivity of the two active site cysteine residues generated on reduction of pig heart lipoamide dehydrogenase.
    Thorpe C; Williams CH
    J Biol Chem; 1976 Jun; 251(12):3553-7. PubMed ID: 6457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion pair formation in pig heart lipoamide dehydrogenase: rationalization of pH profiles for reactivity of oxidized enzyme with dihydrolipoamide and 2-electron-reduced enzyme with lipoamide and iodoacetamide.
    Matthews RG; Ballou DP; Thorpe C; Williams CH
    J Biol Chem; 1977 May; 252(10):3199-207. PubMed ID: 16887
    [No Abstract]   [Full Text] [Related]  

  • 13. The reactive sulfhydryl groups of cytoplasmic aspartate aminotransferase. Localization in the primary structure and spectral properties of their mixed disulfide derivatives with N-dansylcysteine.
    Wilson KJ; Birchmeier W; Christen P
    Eur J Biochem; 1974 Feb; 41(3):471-7. PubMed ID: 4856312
    [No Abstract]   [Full Text] [Related]  

  • 14. The mechanism of the diaphorase reaction catalyzed by glyceraldehyde-3-phosphate dehydrogenase.
    Benitez LV; Allison WS
    Arch Biochem Biophys; 1973 Nov; 159(1):89-96. PubMed ID: 4361558
    [No Abstract]   [Full Text] [Related]  

  • 15. Modification of pig heart lipoamide dehydrogenase by cupric ions.
    Thorpe C; Williams CH
    Biochemistry; 1975 Jun; 14(11):2419-24. PubMed ID: 1169964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of the oxidation-reduction potentials for two-electron and four-electron reduction of lipoamide dehydrogenase from pig heart.
    Matthews RG; Williams CH
    J Biol Chem; 1976 Jul; 251(13):3956-64. PubMed ID: 6467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational studies on lipoamide dehydrogenase from pig heart. 4. The binding of NAD + to non-equivalent sites.
    v Muiswinkel-Voetberg H; Veeger C
    Eur J Biochem; 1973 Mar; 33(2):285-91. PubMed ID: 4348442
    [No Abstract]   [Full Text] [Related]  

  • 18. Reduction of the selenotrisulfide derivative of glutathione to a persulfide analog by glutathione reductase.
    Ganther HE
    Biochemistry; 1971 Oct; 10(22):4089-98. PubMed ID: 4400818
    [No Abstract]   [Full Text] [Related]  

  • 19. Reactions of pig heart lipoamide dehydrogenase with pyridine nucleotides. Evidence for an effector role for bound oxidized pyridine nucleotide.
    Matthews RG; Ballou DP; Williams CH
    J Biol Chem; 1979 Jun; 254(12):4974-81. PubMed ID: 36378
    [No Abstract]   [Full Text] [Related]  

  • 20. An amino acid sequence in the active site of lipoamide dehydrogenase from pig heart.
    Brown JP; Perham RN
    Biochem J; 1974 Mar; 137(3):505-12. PubMed ID: 4608583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.