These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 4371864)
41. Adenosine 3',5'-monophosphate-dependent protein kinase and amylase secretion from rat parotid gland. Kanamori T; Hayakawa T; Nagatsu T Biochem Biophys Res Commun; 1974 Mar; 57(2):394-8. PubMed ID: 4364239 [No Abstract] [Full Text] [Related]
42. Adenylate cyclase activity in the parotid gland of the mouse after isoproterenol stimulation. Revis NW; Durham JP J Histochem Cytochem; 1979 Oct; 27(10):1317-21. PubMed ID: 512317 [TBL] [Abstract][Full Text] [Related]
43. Interactions of alpha-methylfluorene-2-acetic acid with adenylate cyclase. Weinryb I; Michel IM Biochem Pharmacol; 1974 Sep; 23(17):2411-9. PubMed ID: 4154750 [No Abstract] [Full Text] [Related]
44. Alpha adrenergic and cholinergic-muscarinic regulation of adenosine cyclic 3',5'-monophosphate levels in the rat parotid. Oron Y; Kellogg J; Larner J Mol Pharmacol; 1978 Nov; 14(6):1018-30. PubMed ID: 32474 [No Abstract] [Full Text] [Related]
45. ATP-dependent calcium transport in rat parotid basolateral membrane vesicles. Modulation by agents which elevate cyclic AMP. Helman J; Kuyatt BL; Takuma T; Seligmann B; Baum BJ J Biol Chem; 1986 Jul; 261(19):8919-23. PubMed ID: 3013866 [TBL] [Abstract][Full Text] [Related]
46. Changes in the ATP pool of parotid and submaxillary glands of rats after stimulation with isoproterenol. Capps MJ; Mooney CJ; Itzhaki S Gen Pharmacol; 1977; 8(2):129-31. PubMed ID: 598677 [No Abstract] [Full Text] [Related]
47. Effect of beta-adrenergic catecholamines on sodium transport in turkey erythrocytes. Gardner JD; Klaeveman HL; Bilezikian JP; Aurbach GD J Biol Chem; 1973 Aug; 248(16):5590-7. PubMed ID: 4353271 [No Abstract] [Full Text] [Related]
48. Isoproterenol-stimulated DNA synthesis: requirement for OH groups on the phenyl ring for activity. Labows J; Swern D; Baserga R Chem Biol Interact; 1971 Nov; 3(6):449-57. PubMed ID: 5156948 [No Abstract] [Full Text] [Related]
49. Involvement of cAMP response element-binding protein activation in salivary secretion. Yamada K; Inoue H; Kida S; Masushige S; Nishiyama T; Mishima K; Saito I Pathobiology; 2006; 73(1):1-7. PubMed ID: 16785762 [TBL] [Abstract][Full Text] [Related]
50. Catecholamine-stimulated cyclic GMP accumulation in the rat pineal: apparent presynaptic site of action. O'Dea RF; Zatz M Proc Natl Acad Sci U S A; 1976 Oct; 73(10):3398-402. PubMed ID: 10570 [TBL] [Abstract][Full Text] [Related]
51. Restrained adenyl cyclase in human neutrophils: stimulation of cyclic adenosine 3':5'-monophosphate formation and adenyl cyclase activity by phagocytosis and prostaglandins. Stolc V Blood; 1974 May; 43(5):743-8. PubMed ID: 4362499 [No Abstract] [Full Text] [Related]
52. Formation, accumulation and release of adenosine 3',5'-monophosphate induced by histamine in the superior cervical ganglion of the rat in vitro. Lindl T; Cramer H Biochim Biophys Acta; 1974 Mar; 343(1):182-91. PubMed ID: 4364127 [No Abstract] [Full Text] [Related]
53. Characterization and relationship to exocrine secretion of rat parotid gland cyclic AMP-dependent protein kinase. Baum BJ; Colpo FT; Filburn CR Arch Oral Biol; 1981; 26(4):333-7. PubMed ID: 6272671 [No Abstract] [Full Text] [Related]
54. Inhibition by x-rays of isoproterenol-induced increase in cAMP content in parotid gland is not due to direct action on the plasma membranes. Asami K; Furuno I Int J Radiat Biol Relat Stud Phys Chem Med; 1981 Jun; 39(6):665-9. PubMed ID: 6265388 [No Abstract] [Full Text] [Related]
55. Stimulus-secretion coupling: role of cyclic AMP, cyclic GMP and calcium in mediating enzyme (kallikrein) secretion in the submandibular gland. Albano J; Bhoola KD; Heap PF; Lemon MJ J Physiol; 1976 Jul; 258(3):631-58. PubMed ID: 185362 [TBL] [Abstract][Full Text] [Related]
56. Cyclic nucleotide levels in incubations of guinea pig trachea. Murad F; Kimura H Biochim Biophys Acta; 1974 Apr; 343(2):275-86. PubMed ID: 4365103 [No Abstract] [Full Text] [Related]
57. Elevation of cyclic guanosine 3',5'-monophosphate levels in dog thyroid slices caused by acetylcholine and sodium fluoride. Yamashita K; Field JB J Biol Chem; 1972 Nov; 247(21):7062-6. PubMed ID: 4343166 [No Abstract] [Full Text] [Related]
58. Opposing regulatory influences of cyclic guanosine monophosphate and cyclic adenosine monophosphate in the control of cardiac muscle contraction. George WJ; Busuttil RW; Paddock RJ; White LA; Ignarro LJ Recent Adv Stud Cardiac Struct Metab; 1975; 8():243-50. PubMed ID: 175413 [TBL] [Abstract][Full Text] [Related]
59. Development of the cardiac beta adrenergic receptor in fetal rat heart. Martin S; Levey BA; Levey GS Biochem Biophys Res Commun; 1973 Oct; 54(3):949-54. PubMed ID: 4356660 [No Abstract] [Full Text] [Related]
60. [Influence of various hormones on formation of adenosine-3':5'-monophosphate and guanosine-3':5'-monophosphate by particulate preparations from rat kidney]. Schultz G; Jakobs KH; Böhme E; Schultz K Eur J Biochem; 1972 Jan; 24(3):520-9. PubMed ID: 4333653 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]