These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 4372089)

  • 1. NAD levels in 3T3 cells during exponential growth and density-dependent inhibition of growth.
    Jacobson EL; Jacobson MK; Bernofsky C
    FEBS Lett; 1974 Oct; 47(1):23-5. PubMed ID: 4372089
    [No Abstract]   [Full Text] [Related]  

  • 2. Pyridine nucleotide levels as a function of growth in normal and transformed 3T3 cells.
    Jacobson EL; Jacobson MK
    Arch Biochem Biophys; 1976 Aug; 175(2):627-34. PubMed ID: 8713
    [No Abstract]   [Full Text] [Related]  

  • 3. Redox changes of cytochrome alpha-607 and NAD(P)H in rat liver mitochondria induced by L-malate under anaerobic conditions.
    Muraoka S; Sugiyama Y
    FEBS Lett; 1974 Sep; 46(1):263-7. PubMed ID: 4154085
    [No Abstract]   [Full Text] [Related]  

  • 4. Control by cell interaction of phosphate uptake in 3T3 cells.
    Harel L; Jullien M; Blat C
    Exp Cell Res; 1975 Jan; 90(1):201-10. PubMed ID: 164356
    [No Abstract]   [Full Text] [Related]  

  • 5. Iodination of plasma membrane proteins of BHK cells in different growth states.
    Mastro AM; Beer CT; Mueller GC
    Biochim Biophys Acta; 1974 May; 352(1):38-51. PubMed ID: 4859371
    [No Abstract]   [Full Text] [Related]  

  • 6. Dependence of intracellular alkali-ion concentrations of 3T3 and SV 40-3T3 cells on growth density.
    Ernst M; Adam G
    Cytobiologie; 1979 Feb; 18(3):450-9. PubMed ID: 218856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Uridine transport and phosphorylation in 3T3 and CHO cells depending on the culture growth conditions].
    Sorokin AB; Sorkin AD; Nikol'skiĭ NN
    Tsitologiia; 1981 Apr; 23(4):419-26. PubMed ID: 6167038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in glucose oxidation during growth of embryonic heart cells in culture.
    Warshaw JB; Rosenthal MD
    J Cell Biol; 1972 Feb; 52(2):283-91. PubMed ID: 5061949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Saturation density of mouse kidney cultured cells from different developmental stages.
    Saijo N
    Exp Cell Res; 1972 Jun; 72(2):560-2. PubMed ID: 5064511
    [No Abstract]   [Full Text] [Related]  

  • 10. Increased NAD(P)H:(quinone-acceptor)oxidoreductase activity is associated with density-dependent growth inhibition of normal but not transformed cells.
    Schlager JJ; Hoerl BJ; Riebow J; Scott DP; Gasdaska P; Scott RE; Powis G
    Cancer Res; 1993 Mar; 53(6):1338-42. PubMed ID: 8443814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of cultivation conditions on the growth properties of Swiss 3T3 cells].
    Barkan RS; Zenin VV; Skopicheva VI; Sorokin AB
    Tsitologiia; 1984 Oct; 26(10):1161-7. PubMed ID: 6515717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation of NADH by melanin and melanoproteins.
    Gan EV; Haberman HF; Menon IA
    Biochim Biophys Acta; 1974 Nov; 370(1):62-9. PubMed ID: 4371849
    [No Abstract]   [Full Text] [Related]  

  • 13. The oxidoreduction state of free NAD(P) and mass-action ratio of total nicotinamide nucleotides in isolated rat-liver mitochondria.
    Hoek JB; Tager JM
    Biochim Biophys Acta; 1973 Nov; 325(2):197-212. PubMed ID: 4148618
    [No Abstract]   [Full Text] [Related]  

  • 14. The involvement of semidehydroascorbate reductase in the oxidation of NADH by lipid peroxide in mitochondria and microsomes.
    Green RC; O'Brien PJ
    Biochim Biophys Acta; 1973 Feb; 293(2):334-42. PubMed ID: 4145815
    [No Abstract]   [Full Text] [Related]  

  • 15. The preparation and characterisation of a water-soluble coenzymically active dextran-NAD+.
    Larsson PO; Mosbach K
    FEBS Lett; 1974 Sep; 46(1):119-22. PubMed ID: 4371476
    [No Abstract]   [Full Text] [Related]  

  • 16. Free [NADH]/[NAD(+)] regulates sirtuin expression.
    Gambini J; Gomez-Cabrera MC; Borras C; Valles SL; Lopez-Grueso R; Martinez-Bello VE; Herranz D; Pallardo FV; Tresguerres JA; Serrano M; Viña J
    Arch Biochem Biophys; 2011 Aug; 512(1):24-9. PubMed ID: 21575591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of malate-linked reductions of NAD and flavoproteins in Ascaris muscle mitochondria by phosphate.
    Lee IY; Chance B
    Biochem Biophys Res Commun; 1968 Aug; 32(3):547-53. PubMed ID: 4299079
    [No Abstract]   [Full Text] [Related]  

  • 18. A peroxide-dependent reduction of cytochrome c by NADH.
    Misra HP; Fridovich I
    Biochim Biophys Acta; 1973 Apr; 292(3):815-24. PubMed ID: 4350261
    [No Abstract]   [Full Text] [Related]  

  • 19. The influence of cell population density and serum on the (Na+K)-ATPase of 3T3 cells.
    McCaldin B; Tenang EM
    J Cell Physiol; 1985 Jun; 123(3):449-50. PubMed ID: 2985633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vitamin D decreases adipocyte lipid storage and increases NAD-SIRT1 pathway in 3T3-L1 adipocytes.
    Chang E; Kim Y
    Nutrition; 2016 Jun; 32(6):702-8. PubMed ID: 26899162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.