These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 4372363)

  • 1. Transfer RNA genes in mitochondrial DNA of grande (wild-type) yeast.
    Casey JW; Hsu HJ; Getz GS; Rabinowitz M
    J Mol Biol; 1974 Oct; 88(4):735-47. PubMed ID: 4372363
    [No Abstract]   [Full Text] [Related]  

  • 2. Transfer RNA genes in the mitochondrial DNA of cytoplasmic petite mutants of Saccharomyces cerevisiae.
    Casey JW; Hsu HJ; Rabinowitz M; Getz GS; Fukuhara H
    J Mol Biol; 1974 Oct; 88(4):717-33. PubMed ID: 4610157
    [No Abstract]   [Full Text] [Related]  

  • 3. Studies of odd bases in yeast mitochondrial tRNA: absense of the fluorescent "Y" base in mitochondrial DNA coded tRNAPhe, absence of 4-thiouridine.
    Schneller JM; Martin R; Stahl A; Dirheimer G
    Biochem Biophys Res Commun; 1975 Jan; 64(3):1046-53. PubMed ID: 1096885
    [No Abstract]   [Full Text] [Related]  

  • 4. Comparison of the mitochondrial ribonucleic acid from a wild-type grande and a cytoplasmic peptide yeast by ribonucleic acid-deoxyribonucleic acid hybridization.
    Fauman MA; Rabinowitz M; Swift HH
    Biochemistry; 1973 Jan; 12(1):124-8. PubMed ID: 4566925
    [No Abstract]   [Full Text] [Related]  

  • 5. Isoaccepting mitochondrial glutamyl-tRNA species transcribed from different regions of the mitochondrial genome of Saccharomyces cerevisiae.
    Martin N; Rabinowitz M; Fukuhara H
    J Mol Biol; 1976 Mar; 101(3):285-96. PubMed ID: 768489
    [No Abstract]   [Full Text] [Related]  

  • 6. Analysis of grande and petite yeast mitochondrial DNA by tRNA hybridization.
    Cohen M; Rabinowitz M
    Biochim Biophys Acta; 1972 Oct; 281(2):192-201. PubMed ID: 4565131
    [No Abstract]   [Full Text] [Related]  

  • 7. Histidyl-tRNAs and histidyl-tRNA synthetases in wild type and cytoplasmic petite mutants of Saccharomyces cerevisiae.
    Boguslawski G; Vodkin MH; Finkelstein DB; Fink GR
    Biochemistry; 1974 Oct; 13(22):4659-67. PubMed ID: 4609462
    [No Abstract]   [Full Text] [Related]  

  • 8. Characterization and fractionation of tobacco leaf transfer RNA.
    Guderian RH; Pulliam RL; Gordon MP
    Biochim Biophys Acta; 1972 Feb; 262(1):50-65. PubMed ID: 5017709
    [No Abstract]   [Full Text] [Related]  

  • 9. Three isoaccepting forms of leucyl transfer RNA in mitochondria.
    Chiu N; Chiu AO; Suyama Y
    J Mol Biol; 1974 Feb; 82(4):441-57. PubMed ID: 4206356
    [No Abstract]   [Full Text] [Related]  

  • 10. Aminoacylation of fragment combinations from yeast tRNA phe .
    Thiebe R; Harbers K; Zachau HG
    Eur J Biochem; 1972 Mar; 26(1):144-52. PubMed ID: 4557765
    [No Abstract]   [Full Text] [Related]  

  • 11. Coding properties of isoaccepting lysine transfer RNA species from baker's yeast.
    Sen GC; Ghosh HP
    Biochim Biophys Acta; 1973 Apr; 308(7):106-16. PubMed ID: 4579081
    [No Abstract]   [Full Text] [Related]  

  • 12. Evidence for deletion and changed sequence in the mitochondrial deoxyribonucleic acid of a spontaneously generated petite mutant of Saccharomyces cerevisiae.
    Gordon P; Rabinowitz M
    Biochemistry; 1973 Jan; 12(1):116-23. PubMed ID: 4566924
    [No Abstract]   [Full Text] [Related]  

  • 13. Characterization of the native and denatured conformations of tRNA Ser and tRNA Phe from yeast.
    Streeck RE; Zachau HG
    Eur J Biochem; 1972 Oct; 30(2):382-91. PubMed ID: 4351442
    [No Abstract]   [Full Text] [Related]  

  • 14. Coding origin of isoaccepting tRNA in yeast mitochondria.
    Schneller JM; Stahl A; Fukuhara H
    Biochimie; 1975; 57(9):1051-7. PubMed ID: 769848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of mitochondrial deoxyribonucleic acid from a series of petite yeast strains by deoxyribonucleic acid-deoxyribonucleic acid hybridization.
    Gordon P; Casey J; Rabinowitz M
    Biochemistry; 1974 Mar; 13(6):1067-75. PubMed ID: 4592468
    [No Abstract]   [Full Text] [Related]  

  • 16. The interconvertibility of various bacterial transfer ribonucleic acids between an active and an inactive stable configuration.
    Ishida T; Snyder D; Sueoka N
    J Biol Chem; 1971 Oct; 246(19):5965-9. PubMed ID: 5000606
    [No Abstract]   [Full Text] [Related]  

  • 17. Multiplicity of serine-specific transfer RNAs of brewer's and baker's yeast.
    Kruppa J; Zachau HG
    Biochim Biophys Acta; 1972 Sep; 277(3):499-512. PubMed ID: 4560813
    [No Abstract]   [Full Text] [Related]  

  • 18. Isolation and fractionation of yeast nucleic acids. I. Characterization of poly(L-lysine) kieselguhr chromatography using yeast nucleic acids.
    Blamire J; Finkelstein DB; Marmur J
    Biochemistry; 1972 Dec; 11(25):4848-53. PubMed ID: 4347705
    [No Abstract]   [Full Text] [Related]  

  • 19. Position of aminoacylation of individual Escherichia coli and yeast tRNAs.
    Hecht SM; Chinualt AC
    Proc Natl Acad Sci U S A; 1976 Feb; 73(2):405-9. PubMed ID: 1108023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Import of nuclear deoxyribonucleic acid coded lysine-accepting transfer ribonucleic acid (anticodon C-U-U) into yeast mitochondria.
    Martin RP; Schneller JM; Stahl AJ; Dirheimer G
    Biochemistry; 1979 Oct; 18(21):4600-5. PubMed ID: 387075
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.